• Title/Summary/Keyword: Malus ${\times}$ domestica

Search Result 28, Processing Time 0.024 seconds

'Picnic', a New Mid-season Apple Cultivar with Medium Size and Good Taste (식미가 우수한 중과형 사과 '피크닉' 육성)

  • Kwon, Soon-Il;Park, Jong-Taek;Lee, Jung-Woo;Kim, Mok-Jong;Kim, Jeong-Hee
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.784-788
    • /
    • 2015
  • A new cultivar 'Picnic' originated from an artificial cross between 'Fuji' and 'Sansa' at National Institute of Horticultural & Herbal Science in 1994. The cultivar was preliminarily selected among the elite siblings for its high fruit quality in 2003. After regional adaptability tests in five districts for four subsequent years as 'Wonkyo Ga-34', it was ultimately selected in 2008. Optimum harvest time is late September. Mature fruit has mean weight of 233 g and is conic with light red skin on a greenish yellow ground and yellowish white flesh. The fruit contains a favorable total soluble solids content at $13.8^{\circ}Brix$ and titratable acidity at 0.43%, which results in gustatory harmony between sugars and acids. It is not resistant to bitter rot or Marssonina blotch. 'Picnic' exhibits a physiological cross compatibility with leading cultivars such as 'Fuji', 'Hongro' and 'Tsugaru'. Tree topology is semi-spreading with a weak growth habit.

Studies on Fine Spirits Aging [Part I]-On the Aptitude of the Korean Oak Varieties as Barrels for Aging Apple Fine Spirits- (증류주(蒸溜酒) 숙성(熟成)에 관(關)한 연구(硏究) 제1보[第一報]-사과 증류주(蒸溜酒) 숙성(熟成)에 있어서 숙성통재(熟成桶材)로서 한국산(韓國産) 참나무 품종별(品種別) 이용적성(利用適性)에 관(關)하여-)

  • Lee, Ke-Ho
    • Applied Biological Chemistry
    • /
    • v.20 no.1
    • /
    • pp.66-80
    • /
    • 1977
  • This research was carried as a part of the basic study, in which the aptitude of theKorean oak varieties as barrels for aging apple fine spirits was investigated, and thefollowing results were obtained. 1. Following was the result of the chemical analysis of the fruits which are now mass-produced and can be used as a substitute for raw materials for wine production. Apple (Malus pumila Miller var. domestica Schneider) : Total sugar. total acid, volatile acid and pectin of Jonathan (Hong-og) were 13.95%, 0.46%, 0.012%, 0.20% respectively. Total sugar, total acid, volatile acid and pectin of Ralls (Koog-kwang) were 13.35%, 0.43%, 0.011%, 0.45% respectively. 2. Because of low yield of apple juice due to cellulose, pectin, hemicellulose which are present besides sugars, acids in apples, the apple juice were treated with xylanase of Aspergillus niger SUAFM-430, cellulase and pectinase of Aspergillus niger SUAFM-6. This treatment increased the yield of apple juice. And the apple juice was sterilized by adding potassium metabisulfite $(K_2S_20_5)$ and Saccharomyces cerevisae var. ellipsoideus Rasse Johannisberg II (SUAFM-1018) as a cultivation yeast, which has a strong fermentation power was used to ferment. The yield of apple wine based on raw material was 86-87%. The amount of ethanol, extract and methanol obtained from Jonathan and Ralls were 13.5%, 5.4%, 0.04-0.05% respectively. 3. Wines were distilled for two times by the pot still method to make fine spirits. The yield of fine spirits from apple wine mash was 86.6%, and the pH of fine spirits from Jonathan and Ralls were 4.1, 4.2 respectively. 4. The oak chips made of inner part or outer part of 24 Korean oak varieties were used to select the barrel for aging fine spirits. Two oak chips (one oak chip: $1{\times}1{\times}5cm$) of the inner part or of the outer part of each oak variety were dipped into 300 ml of fine spirits, which was bottled in 640ml beer bottle, and followed aging. The colors, flavors and tastes of the fine spirits were checked during 6 months. A. As a criterion for the first screening of oak barrels for aging fine spirits, the rate five of color extraction was determined. The oak chips showed good results in their order as follows and the best 5 varieties were selected. Gal-cham: Quercus aliena Blume (Inner part), Gul-cham: Quercus variabilis Blume (Outer part), Gal-chain: Quercus aliena Blume (Outer part), Jol-cham: Quercus serrata Thumb (Inner and Outer part). Sin-gal-cham: Quercus mongolica Fisher (Outer and Inner part) Sang-su-ri: Quercus acutissima Carruthers (Outer and Inner part) B. To find out the influence of aging temperature on aging, apple fine spirits were aged by dipping each oak chip at room temperature $(24-25^{\circ}C)$) and $45^{\circ}C$. Aging at $45^{\circ}C$ gave the best result followed aging at $30^{\circ}C$ and then at room temperature. C. Apple fine spirits was aged for six months by dipping oak chips in Erlenmeyer flasks and was irradiated with U.V light. The U.V irradiation enhanced the aging effect by nearly two times, compared with the aging without U.V irradiation. D. In aging apple fine spirits by dipping two oak chips, it was observed that the extent of the extraction of most components of oak chips were strongly dependent upon the pH of fine spirits. E. Oak chips of five selected oak varieties and a Limousin white oak from France as a control were used. Each apple fine spitits was dipped by two oak chips, and was aged at room temperature $(24-25^{\circ}C)$, $30^{\circ}C$, $45^{\circ}C$, and with the U.V irradiation at room temperature shaking every week. After six months of aging, the panel test of these aged fine spirits (Young Brandy) showed the following result. Young brandy of apples aged at $45^{\circ}C$ by dipping oak chips of Gal-chain was almost as the fine spirits which were aged at room temperature by dipping Limousin white oak chips from France. Young brandy of with U.V. irradiation at room temperature which were aged by dipping oak chips of Gal-chain was a little worse than that from the fine spirits aged at room temperature by dipping Limousin white oak chips from France. And so, Korean oak varieties are thought to be able to be used for aging every apple fine spirit which was here investigated.

  • PDF

Optimum Crop Load in Different Planting Densities of Adult 'Fuji'/M.9 Apple Tree for Preventing Biennial Bearing and Stabilizing Tree Vigor (성목기 '후지'/M.9 사과나무의 해거리 방지와 수세안정을 위한 재식거리별 적정 착과 수준)

  • Sagong, Dong-Hoon;Yoon, Tae-Myung
    • Horticultural Science & Technology
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • This study was conducted in three years (7-9 years after planting) to investigate vegetative growth, yield, fruit quality, and return bloom for optimum crop load based on different planting densities of adult 'Fuji'/M.9 apple trees. As plant materials, 'Fuji'/M.9 apple trees planted at $3.5{\times}1.5m$ (190 trees per 10 a), $3.5{\times}1.2m$ (238 trees per 10 a), and $3.2{\times}1.2m$ (260 trees per 10 a) spacing and trained as slender spindles were used. The crop load was assigned to five different object ranges as follows: 55-64, 65-74, 75-84, 85-94, and 95-104 fruit per tree. TCA increment, total shoot growth, return bloom, yield per tree, and yield efficiency tended to increase as planting density decreased, and fruit weight and soluble solid content tended to increase as the object range of crop load decreased. Fruit red color tended to increase as shoot growth decreased. For apple trees planted with 238 trees and 260 trees per 10a, biennial bearing occurred when the crop load was over 85-94 and 75-84 fruits, respectively. However, biennial bearing did not occur when the crop load was 95-104 fruits in apple trees planted with 190 trees per 10a. Accumulated yield tended to increase as planting density and crop load increased, but that of biennial bearing did not show such a difference. Based on our results, optimum crop load recommendations are to set 95-104 fruits per tree in 'Fuji'/M.9 mature apple trees planted at 190 trees per 10a, 75-84 fruits per tree at 238 trees per 10a, and 65-74 fruits per tree at 260 trees per 10a.

Fruit Quality and Storability by Harvest Time at 'Fuji'/M.9 Apple Orchard Located in the Area with a High Air Temperature during the Fall Season (가을철 기온이 높은 지역에 위치한 '후지'/M.9 사과원의 수확시기에 따른 과실품질과 저장성)

  • Sagong, Dong-Hoon;Kweon, Hun-Joong;Song, Yang-Yik;Park, Moo-Yong;Kang, Seok-Beom;Yoon, Tae-Myung
    • Horticultural Science & Technology
    • /
    • v.31 no.4
    • /
    • pp.437-446
    • /
    • 2013
  • This study was conducted for three years (2007, 2009, and 2010) to investigate the changes in fruit quality during maturation, and the quality and storage ability of fruits harvested at different times of 'Fuji' apple in Daegu region with a high air temperature during the fall season. Changes in apple fruit quality during the maturation period were investigated from 120-135 days to 183-198 days after full bloom. In comparing quality and storage ability of fruits harvested at different times, fruits harvested more than 180 days after full bloom were used. During the maturation period, poor coloring was the problem for 'Fuji' apple in Daegu region by the high air temperature about $20^{\circ}C$. In comparing quality of fruits harvested at different times, the soluble solid contents and hunter a value were increased by the extended harvest time. Fruit weight during harvest was not affected by different harvest time, while the fruit firmness and titratable acidity during harvest were decreased critically when the freezing damage happened. Ethylene production, fruit firmness, and titratable acidity during cold storage for twenty weeks did not differ according to the different harvest time. Soluble solid contents of fruits harvested at 216 days after full bloom in 2009 were similar at the time of harvest and cold storage. For fruits harvested at 201 days after full bloom, soluble solid content during cold storage was higher than during harvest time. However fruit firmness, soluble solid content, and titratable acidity after cold storage of fruit harvested after freezing damage was lower than those of the fruit harvested before freezing damage. The results show that the extended harvest time of 'Fuji' apples about 2-4 weeks from 180-200 days after full bloom in area with above-air temperature during fall season was seemed to be beneficial to enhancing soluble solid contents and fruit red color, but harvesting after the middle of November was dangerous because minimum air temperature began to fall under $-3.0^{\circ}C$.

Vegetative Growth, Productivity, and Fruit Quality in Tall Spindle of 'Fuji'/M.9 Apple Trees (키큰방추형 '후지'/M.9 사과나무의 영양생장, 생산성 및 과실품질)

  • Yang, Sang-Jin;Sagong, Dong-Hoon;Yoon, Tae-Myung;Song, Yang-Yik;Park, Moo-Yong;Kweon, Hun-Joong
    • Horticultural Science & Technology
    • /
    • v.33 no.2
    • /
    • pp.155-165
    • /
    • 2015
  • Well-feathered (over 10 feathers) 'Fuji'/M.9 apple trees were planted at $3.0{\times}1.0m$ and trained to slender spindle with 2.5 m height or to tall spindle with 3.5 m height, and the vegetative growth, productivity, and fruit quality of two training systems were compared for 8 years. The canopy volume of the tall spindle trees surpassed that of the slender spindle trees 4 years after planting and was 25% larger than that of the slender spindle trees 5 years after planting. The accumulated yield over 8 years for the tall spindle system was 14% higher than that of the slender spindle system. Alternate bearing and incidence of marssonina blotch were observed in both treatments after 5 years of planting. There was often vegetative imbalance in the trees however, the degree of yield loss and vegetative imbalance of the tall spindle trees was lower than those of the slender spindle trees. Soluble solid content and fruit red color of the tall spindle trees were higher than that of the slender spindle trees in 5 year after planting, resulting from increased light penetration in the canopy due to even distribution of lateral branches and from fruit bearing in different height locations of the trees. In conclusion, increasing the tree height to about 3.5 m using slender spindle 'Fuji'/M.9 apple trees planted with over 333 trees per 10a led to better light penetration, yield and fruit quality compared to a conventional wide training system with the slender spindle.

Evaluation of Early Productivity of High Density 'Fuji' Apple Orchards by Planting Well-feathered Trees/M.9 EMLA ('후지' 사과의 우량 측지묘/M.9 EMLA를 이용한 밀식재배원의 조기 생산성 평가)

  • Yang, Sang-Jin;Park, Moo-Yong;Song, Yang-Yik;SaGong, Dong-Hoon;Yoon, Tae-Myung
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.374-380
    • /
    • 2010
  • Well-feathered (5.2 feathers, stem diameter 13 mm) trees of 'Fuji' apple/ M.9 EMLA were planted at $4.0{\tiems}1.5$ m and whip trees (stem diameter 10 mm) of 'Fuji'/M.26 at $4.0{\times}2.0$ m were trained to the slender spindle. The productivity and yield efficiency of two orchard systems were compared for 6 years. The canopy volume of the tree/M.9 EMLA reached $2.07m^3$ in 2nd year and increased slowly to almost the targeted tree volume of $2.9m^3$ in 4th year. Trees/M.26 grew slowly at the begin but from 3rd year the tree volume expanded quickly to reach $5.6m^3$ in 5th year, covering over the allowed space. Yield of M.9 EMLA per 10a increased from 0.3 ton in 2nd year to 4.6 ton in 5th year, and 5.0 ton in 6th year, but yield of M.26 per 10a increased from 0.5 ton in 3rd to 2.9 ton in 6th year. Cumulative yield per 10a up to 6th year was 13.9 ton for M.9 EMLA but only 9.8 ton for M.26. Fruit weight for M.9 EMLA was heavier than that for M.26. In conclusion, the high density planting system with well-feathered trees/M.9 EMLA was better than the conventional wide planting system with whip trees/M.26.

Influence of Seasonal incidence and Defoliation Degree of Marssonina Blotch on Fruit Quality and Shoot Growth of 'Fuji'/M.9 Apple Tree (갈색무늬병의 시기별 이병 및 낙엽 정도가 '후지'/M.9 사과나무의 과실품질 및 신초생장에 미치는 영향)

  • Park, Moo-Yong;Sagong, Dong-Hoon;Kweon, Hun-Joong;Do, Yun-Su;Song, Yang-Yik;Lee, Dong-Hyuk
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.523-530
    • /
    • 2013
  • This study investigated the influence of seasonal incidence and defoliation degree caused by Marssonina blotch (Diplocarpon mali Harada et Sawamura) on shoot growth and fruit quality of 'Fuji'/M.9 apple tree. The occurrence of marssonina blotch in Gunwi region was observed from the mid of July 2009, and percentage of defoliation was about 10% in the end of October. In 2010, that started in the early of June. By the end of September, percentage of defoliation was 20% and it reached 50% in late October. Secondary growth of terminal shoot in 2010 was three times as much as that in 2009. In 2009, the soluble solid contents and the red color (hunter a value) during fruit maturation increased to $13.8^{\circ}Brix$ and 16.2, respectively. In 2010, the soluble solid content during fruit maturation remained in the $12.1-12.6^{\circ}Brix$ range after early October, and the red color began to increase after the end of September when the percentage of defoliation was 20%. As for fruit quality by defoliation degree, the red color decreased when defoliation percentage of bourse shoot at the end of October was more than 30%. Fruit weight and soluble solids also decreased when defoliation percentage was more than 50%. Fruit length and diameter of over 30% defoliation treatments begun to decrease after the middle of August, compared with those of under 30% defoliation treatment. Photosynthetic rate of the leaves that was located at the secondary growth of bourse shoot was similar to that of leaves which was located at the middle of bourse shoot. However, the size and the soluble solid content of fruit were not affected by photosynthesis activities of bourse shoot leaves which was develop in the secondary shoot growth.

Effects of Wind Net Shading and Sprinkling on Growing Conditions and Fruit Quality in 'Hongro' and 'Fuji' Apple Fruits (방풍망 차광시설 및 미세살수 처리가 '홍로' 및 '후지' 사과나무의 생육환경 및 과실 품질에 미치는 영향)

  • Kang, Kyeong-Jin;Seo, Jeong-Hak;Yoon, Hong-Ki;Seo, Jeong-Seok;Choi, Taek-Yong;Chun, Jong-Pil
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.126-133
    • /
    • 2019
  • In recent years, the deterioration of fruit quality caused by poor coloration and sunburn disorder has become serious problems in apple market, which is a result of the increase of surface temperature due to the abnormal temperature increase during summer season. This study was conducted to investigate the effect of wind net shading and fine water spray using sprinkler on fruit coloration, sunburn damage and overall fruit quality of 'Fuji' and 'Hongro' apples. Fifteen sprinklers (7L/hr) were installed at the orchard of the Chungcheongnam-do Agricultural Research and Extension Services, located in Sinam-myeon Chungcheongnam-do Korea, at a height of 3m above the apple tree of $1.5m{\times}3.5m$ north-south direction. Fine water spraying treatment was divided into day time spray (10:00 am to 6:00 pm) and all day spray (10:00 am to 10:00 pm) from early July to 10 days before harvest in 2017 and 2018 season, respectively. Temperature of the surface of apple fruit, characteristic of fruit, and degree of sunburn damage were investigated. In 'Fuji', the fruit surface temperature checked at 2 pm on August 10 was decreased considerably in the day time spray ($35.6^{\circ}C$) and wind net ($39.0^{\circ}C$) when compared with the untreated control ($44.4^{\circ}C$). Similarly, the fruit surface temperature also decreased considerably in the all day spray ($35.1^{\circ}C$) and wind net ($36.9^{\circ}C$) treatments when compared with the untreated control ($46.5^{\circ}C$) in 'Hongro' apples. The incidence of sunburn disorder was significantly decreased with day time spray (5.0%), all day spray (5.8%) and wind net (7.0%) when compared with untreated control (23.4%) in 'Fuji' apples. As a results, the treatment of fine water spray and wind net consequently showed 26% and 34% increase of redness ($a^*$) value in the skin color difference, respectively, in 'Fuji' apples.