• Title/Summary/Keyword: Malaria vaccines

Search Result 8, Processing Time 0.026 seconds

Evaluating the knowledge, attitude, perception, and readiness of caregivers of under 5-year-old children to accept malaria vaccine in Nigeria

  • Blessing Nkechi Emmanuel;Abubakar Nuhu Ishaq;Olisaemeka Zikora Akunne;Umar Faruk Saidu
    • Clinical and Experimental Vaccine Research
    • /
    • v.13 no.2
    • /
    • pp.121-131
    • /
    • 2024
  • Purpose: The global burden of disease and mortality is greatly influenced by malaria, particularly in children. Nigeria alone accounts for about 25% of global malaria cases and fatalities. Despite efforts to control and eliminate malaria, conventional treatments have limitations, prompting the need for a vaccine. However, while efforts have focused on researching and developing malaria vaccines, less attention has been given to public acceptance and preparedness for vaccination. Materials and Methods: The study employed a cross-sectional approach to assess the knowledge, perceptions, and readiness of caregivers towards the malaria vaccine. Data were collected through a physical and online survey among a representative sample of caregivers across the six geopolitical regions of Nigeria. The data was analyzed using principal component analysis and percentages. Results: Out of 347 respondents, 180 (51%) men, 165 (46.6%) women, 2 (0.5%) transgender, 156 (45%) rural settlers, and 191 (55%) urban settlers were identified in this study. The study reported an overall acceptance rate of 78.4% and 21.6% resistance rate. The age group between 21-30 years recorded the highest 207 (59.6%). A significant number of participants, 252 (59.6%), held at least a higher or post-secondary certificate, out of which 193 (55.6%) demonstrated strong readiness to accept the malaria vaccine. The study showed that fear of adverse effects was the main reason for malaria vaccine resistance among caregivers. Conclusion: This study's findings offer valuable insights into caregivers' knowledge about the malaria vaccine, highlighting the factors that impact the acceptance of the malaria vaccine.

Polymeric Microspheres As Antigen Delivery Systems

  • Oh, Yu-Kyoung
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.11a
    • /
    • pp.115-120
    • /
    • 1996
  • Vaccination has been considered to be the most effective way to control infectious diseases. Currently, many vaccines used in humans are live-attenuated or killed microorganisms. Polio, mumps, and measles vaccines are live-attenuated. Killed vaccines include cholera and pertussis vaccines, These conventional vaccines, however, suffer from some problems. In the case of live-attenuated vaccines, reversion to virulence is observed in a small but significant number of clinical cases each year. In killed vaccines, due to the possible hazard to employees working with live pathogens, the cost of preparation is high. Killed vaccines also need to be given in multiple doses, Furthermore, both live-attenuated and killed vaccines have possible presence of cellular materials leading to side effects. Moreover, there are diseases such as malaria and hepatitis for which conventional attenuated and killed vaccines are not available because the pathogens cannot be grown in sufficient amounts to allow the classical methods to be used.

  • PDF

Unraveling Haplotype Diversity of the Apical Membrane Antigen-1 Gene in Plasmodium falciparum Populations in Thailand

  • Lumkul, Lalita;Sawaswong, Vorthon;Simpalipan, Phumin;Kaewthamasorn, Morakot;Harnyuttanakorn, Pongchai;Pattaradilokrat, Sittiporn
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.2
    • /
    • pp.153-165
    • /
    • 2018
  • Development of an effective vaccine is critically needed for the prevention of malaria. One of the key antigens for malaria vaccines is the apical membrane antigen 1 (AMA-1) of the human malaria parasite Plasmodium falciparum, the surface protein for erythrocyte invasion of the parasite. The gene encoding AMA-1 has been sequenced from populations of P. falciparum worldwide, but the haplotype diversity of the gene in P. falciparum populations in the Greater Mekong Subregion (GMS), including Thailand, remains to be characterized. In the present study, the AMA-1 gene was PCR amplified and sequenced from the genomic DNA of 65 P. falciparum isolates from 5 endemic areas in Thailand. The nearly full-length 1,848 nucleotide sequence of AMA-1 was subjected to molecular analyses, including nucleotide sequence diversity, haplotype diversity and deduced amino acid sequence diversity and neutrality tests. Phylogenetic analysis and pair-wise population differentiation ($F_{st}$ indices) were performed to infer the population structure. The analyses identified 60 single nucleotide polymorphic loci, predominately located in domain I of AMA-1. A total of 31 unique AMA-1 haplotypes were identified, which included 11 novel ones. The phylogenetic tree of the AMA-1 haplotypes revealed multiple clades of AMA-1, each of which contained parasites of multiple geographical origins, consistent with the $F_{st}$ indices indicating genetic homogeneity or gene flow among geographically distinct populations of P. falciparum in Thailand's borders with Myanmar, Laos and Cambodia. In summary, the study revealed novel haplotypes and population structure needed for the further advancement of AMA-1-based malaria vaccines in the GMS.

Genetic diversity in merozoite surface protein(MSP)-1 and MSP-2 genes of Plasmodium falciparum in a major endemic region of Iran

  • Heidari Aliehsan;Keshavarz Hossein;Rokni Mohammad B.;Jelinek Tomas
    • Parasites, Hosts and Diseases
    • /
    • v.45 no.1 s.141
    • /
    • pp.59-63
    • /
    • 2007
  • Merozoite surface protein-1(MSP-1) and merozoite surface protein-2(MSP-2) were used to develop vaccines and to investigate the genetic diversity in Plasmodium falciparum malaria in Iran. Nested polymerase chain reaction amplification was used to determine polymorph isms of block 2 of the MSP-1 and the central domain of MSP-2 genes. A total of 67 microscopically positive P. falciparum infected individuals from a major endemic region, southeast Iran, were included in this trial. Nine alleles of MSP-1 and 11 alleles of MSP-2 were identified. The results showed that amplified product from these surface antigen genes varied in size and there was specific pattern for each isolate. Besides, regarding this pattern, 23 multiple infections with at least 2 alleles were observed. While the endemic regions of malaria in Iran is classified in low to moderate group, but extensive polymorphism was observed for each marker and the MSP-2 central repeat was the most diverse that could be considered in designing malaria vaccine.

Isolation and Characterization of Vaccine Candidate Genes Including CSP and MSP1 in Plasmodium yoelii

  • Kim, Seon-Hee;Bae, Young-An;Seoh, Ju-Young;Yang, Hyun-Jong
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.3
    • /
    • pp.255-267
    • /
    • 2017
  • Malaria is an infectious disease affecting humans, which is transmitted by the bite of Anopheles mosquitoes harboring sporozoites of parasitic protozoans belonging to the genus Plasmodium. Despite past achievements to control the protozoan disease, malaria still remains a significant health threat up to now. In this study, we cloned and characterized the full-unit Plasmodium yoelii genes encoding merozoite surface protein 1 (MSP1), circumsporozoite protein (CSP), and Duffy-binding protein (DBP), each of which can be applied for investigations to obtain potent protective vaccines in the rodent malaria model, due to their specific expression patterns during the parasite life cycle. Recombinant fragments corresponding to the middle and C-terminal regions of PyMSP1 and PyCSP, respectively, displayed strong reactivity against P. yoelii-infected mice sera. Specific native antigens invoking strong humoral immune response during the primary and secondary infections of P. yoelii were also abundantly detected in experimental ICR mice. The low or negligible parasitemia observed in the secondary infected mice was likely to result from the neutralizing action of the protective antibodies. Identification of these antigenic proteins might provide the necessary information and means to characterize additional vaccine candidate antigens, selected solely on their ability to produce the protective antibodies.

Allelic Diversity and Geographical Distribution of the Gene Encoding Plasmodium falciparum Merozoite Surface Protein-3 in Thailand

  • Sawaswong, Vorthon;Simpalipan, Phumin;Siripoon, Napaporn;Harnyuttanakorn, Pongchai;Pattaradilokrat, Sittiporn
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.2
    • /
    • pp.177-187
    • /
    • 2015
  • Merozoite surface proteins (MSPs) of malaria parasites play critical roles during the erythrocyte invasion and so are potential candidates for malaria vaccine development. However, because MSPs are often under strong immune selection, they can exhibit extensive genetic diversity. The gene encoding the merozoite surface protein-3 (MSP-3) of Plasmodium falciparum displays 2 allelic types, K1 and 3D7. In Thailand, the allelic frequency of the P. falciparum msp-3 gene was evaluated in a single P. falciparum population in Tak at the Thailand and Myanmar border. However, no study has yet looked at the extent of genetic diversity of the msp-3 gene in P. falciparum populations in other localities. Here, we genotyped the msp-3 alleles of 63 P. falciparum samples collected from 5 geographical populations along the borders of Thailand with 3 neighboring countries (Myanmar, Laos, and Cambodia). Our study indicated that the K1 and 3D7 alleles co-existed, but at different proportions in different Thai P. falciparum populations. K1 was more prevalent in populations at the Thailand-Myanmar and Thailand-Cambodia borders, whilst 3D7 was more prevalent at the Thailand-Laos border. Global analysis of the msp-3 allele frequencies revealed that proportions of K1 and 3D7 alleles of msp-3 also varied in different continents, suggesting the divergence of malaria parasite populations. In conclusion, the variation in the msp-3 allelic patterns of P. falciparum in Thailand provides fundamental knowledge for inferring the P. falciparum population structure and for the best design of msp-3 based malaria vaccines.

Evolution of Genetic Polymorphisms of Plasmodium falciparum Merozoite Surface Protein (PfMSP) in Thailand

  • Kuesap, Jiraporn;Chaijaroenkul, Wanna;Ketprathum, Kanchanok;Tattiyapong, Puntanat;Na-Bangchang, Kesara
    • Parasites, Hosts and Diseases
    • /
    • v.52 no.1
    • /
    • pp.105-109
    • /
    • 2014
  • Plasmodium falciparum malaria is a major public health problem in Thailand due to the emergence of multidrug resistance. The understanding of genetic diversity of malaria parasites is essential for developing effective drugs and vaccines. The genetic diversity of the merozoite surface protein-1 (PfMSP-1) and merozoite surface protein-2 (PfMSP-2) genes was investigated in a total of 145 P. falciparum isolates collected from Mae Sot District, Tak Province, Thailand during 3 different periods (1997-1999, 2005-2007, and 2009-2010). Analysis of genetic polymorphisms was performed to track the evolution of genetic change of P. falciparum using PCR. Both individual genes and their combination patterns showed marked genetic diversity during the 3 study periods. The results strongly support that P. falciparum isolates in Thailand are markedly diverse and patterns changed with time. These 2 polymorphic genes could be used as molecular markers to detect multiple clone infections and differentiate recrudescence from reinfection in P. falciparum isolates in Thailand.

When Disease Defines a Place: Batavia in British Diplomatic and Military Narratives, 1775-1850

  • Keck, Stephen
    • SUVANNABHUMI
    • /
    • v.14 no.2
    • /
    • pp.117-148
    • /
    • 2022
  • The full impact of COVID-19 has yet to be felt: while it may not define the new decade, it is clear that its immediate significance was to test many of the basic operating assumptions and procedures of global civilization. Even as vaccines are developed and utilized and even as it is possible to see the beginning of the end of COVID-19 as a discrete historical event, it remains unclear as to its ultimate importance. That said, it is evident that the academic exploration of Southeast Asia will also be affected by both the global and regional experiences of the pandemic. "Breakthroughs of Area Studies and ASEAN in the Era of Homo Untact" promises to help reconceptualize the study of the region by highlighting the importance of redefined spatial relationships and new potentially depersonalized modes of communication. This paper acknowledges these issues by suggesting that the transformations caused by the pandemic should motivate scholars to raise new questions about how to understand humanity-particularly as it is defined by societies, nations and regions. Given that COVID-19 (and the response to it) has altered many of the fundamental rhythms of globalized regions, there is sufficient warrant for re-examining both the ways in which disease, health and their related spaces affect the perceptions of Southeast Asia. To achieve "breakthroughs" into the investigation of the region, it makes sense to have another glance at the ways in which the discourses about diseases and health may have helped to inscribe definitions of Southeast Asia-or, at the very least, the nations, societies and peoples who live within it. In order to at least consider these larger issues, the discussion will concentrate on a formative moment in the conceptualization of Southeast Asia-British engagement with the region in the late 18th and early 19th centuries. To that end three themes will be highlighted: (1) the role that British diplomatic and military narratives played in establishing the information priorities required for the construction of colonial knowledge; (2) the importance not only of "colonial knowledge" but information making in its own right; (3) in anticipation of the use of big data, the manner in which manufactured information (related to space and disease) could function in shaping early British perceptions of Southeast Asia-particularly in Batavia and Java. This discussion will suggest that rather than see social distancing or increased communication as the greatest outcome of COVID-19, instead it will be the use of data-that is, big, aggregated biometric data which have not only shaped responses to the pandemic, but remain likely to produce the reconceptualization of both information and knowledge about the region in a way that will be at least as great as that which took place to meet the needs of the "New Imperialism." Furthermore, the definition and articulation of Southeast Asia has often reflected political and security considerations. Yet, the experience of COVID-19 could prove that data and security are now fused into a set of interests critical to policy-makers. Given that the pandemic should accelerate many existing trends, it might be foreseen these developments will herald the triumph of homo indicina: an epistemic condition whereby the human subject has become a kind of index for its harvestable data. If so, the "breakthroughs" for those who study Southeast Asia will follow in due course.