• Title/Summary/Keyword: MalE

Search Result 93, Processing Time 0.023 seconds

Soluble Expression of Human Angiostatin and Endostatin by Maltose Binding Protein (MBP) Fusion in E. coli (Maltose Binding Protein 융합단백질에 의한 인간유래의 앤지오스타틴과 앤도스타틴의 대장균에서 수용성 단백질발현)

  • Paek, Seon-Yeol;Choi, Shin-Geon
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.59-63
    • /
    • 2008
  • Rapid production of therapeutic proteins such as angiostatin and endostatin angiogenic inhibititors has been highly demanded for cancer treatment. In this regard, recombinant human angiostatin and endostatin were successfully expressed as soluble forms by maltose binding protein (MBP)-mediated fusion expression in Escherichia coli. PCR amplified, angiostatin and endostatin genes from human placenta cDNA library were inserted into an expression vector pMAL-c2e to construct prokaryotic expression vectors, pMAL-c2e/AS and pMAL-c2e/ES, respectively. Recombinant angiostatin and endostatin were efficiently expressed in E. coli origami (DE3) after IPTG induction and protein expression were confirmed by SDS-PAGE analyses. The expressed recombinant proteins were purified near homogenity using an amylose affinty column chromatography. In contrast that previous E. coli expressions were all insoluble, our results first time demonstrated that MBP fused human angiostatin and endostatin were soluble in E. coli.

  • PDF

Characterization of the Transglycosylation Reaction of 4-α-Glucanotransferase (MalQ) and Its Role in Glycogen Breakdown in Escherichia coli

  • Nguyen, Dang Hai Dang;Park, Sung-Hoon;Tran, Phuong Lan;Kim, Jung-Wan;Le, Quang Tri;Boos, Winfried;Park, Jong-Tae
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.357-366
    • /
    • 2019
  • We first confirmed the involvement of MalQ (4-${\alpha}$-glucanotransferase) in Escherichia coli glycogen breakdown by both in vitro and in vivo assays. In vivo tests of the knock-out mutant, ${\Delta}malQ$, showed that glycogen slowly decreased after the stationary phase compared to the wild-type strain, indicating the involvement of MalQ in glycogen degradation. In vitro assays incubated glycogen-mimic substrate, branched cyclodextrin (maltotetraosyl-${\beta}$-CD: G4-${\beta}$-CD) and glycogen phosphorylase (GlgP)-limit dextrin with a set of variable combinations of E. coli enzymes, including GlgX (debranching enzyme), MalP (maltodextrin phosphorylase), GlgP and MalQ. In the absence of GlgP, the reaction of MalP, GlgX and MalQ on substrates produced glucose-1-P (glc-1-P) 3-fold faster than without MalQ. The results revealed that MalQ led to disproportionate G4 released from GlgP-limit dextrin to another acceptor, G4, which is phosphorylated by MalP. In contrast, in the absence of MalP, the reaction of GlgX, GlgP and MalQ resulted in a 1.6-fold increased production of glc-1-P than without MalQ. The result indicated that the G4-branch chains of GlgP-limit dextrin are released by GlgX hydrolysis, and then MalQ transfers the resultant G4 either to another branch chain or another G4 that can immediately be phosphorylated into glc-1-P by GlgP. Thus, we propose a model of two possible MalQ-involved pathways in glycogen degradation. The operon structure of MalP-defecting enterobacteria strongly supports the involvement of MalQ and GlgP as alternative pathways in glycogen degradation.

Solubilization of RhRnBp and Peysn5 by protein fusion in Eshcherichia coli

  • Lee, Chung;Kim, Byeong-Gi
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.225-228
    • /
    • 2001
  • RhRnBp and Peysn5 are the proteins related to carbohydrate synthesis. RhRnBp originated form human was expressed as inclusion body in E. coli. Peysn5 originated form actinomadura was expressed as low level and inclusion body in E. coli. Ub, Trx, MalE and NusA is used as fusion partner to RhRnBp and Peysn5. The solubility of all fusion protein is NusA > MalE> Trx > Ub. Expression level of RhRnBp fusions in $37^{\circ}C$ is higher than that in $25^{\circ}C$. However in the case of Peysn5. Expression levels in $25^{\circ}C$ were higher. MalE fusion had highest activity in RhRnBp fusions. There were no activity in Peysn5.

  • PDF

A Study on Influences of the Antibacterial Activity of Methampicillin Lysinate by the Several Medicinals (병용약물(倂用藥物)이 Methampicillin Lysinate의 항균력(抗菌力)에 미치는 영향(影響))

  • Kim, Seung-Up;Kim, Young-Il;Kim, Johng-Kap
    • Journal of Pharmaceutical Investigation
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 1978
  • Drug interaction of a new antibiotic, methampicillin lysinate (MAL) with nine drugs were investigated using four species of gram positive and gram negative bacteria. The experimental results were as follows: 1. MIC of MAL were found to be decreased against E. coil when combined with mefenamic acid, probenecid, aluminium hydroxide gel or corticosteroids. The other drugs did not affect MIC of MAL against the same bacteria. 2. MIC of MAL were found to be increased against Staphylococcus aureus ATCC 6538-P, 9441 when combined with mefenamic acid, aluminum hydroxide gel or dexamethasone acetate. The other drugs did not affect MIC of MAL against the same bacteria. 3. MIC of MAL were found to be increased against Shigella dysenteriae when either of the nine drugs was combined. 4. MIC of MAL were found to be increased approximately 2.5 times when combined with Streptokinase-Streptodornase or hydrocortisone and to be decreased approximately 2 times when combined with probenecid or dexamethasone against Salmonella typhi(type 2). It seems the other drugs do not affect the MIC of MAL against the same bacteria.

  • PDF

Expession of the Recombinant Klebsiella aerognes UreF Protein as a MalE Fusion

  • Kim, Keun-Young;Yang, Chae-Ha;Lee, Mann-Hyung
    • Archives of Pharmacal Research
    • /
    • v.22 no.3
    • /
    • pp.274-278
    • /
    • 1999
  • Expression of the active urease of the enterobacterium, Klebsiella aerogens, requires the presence of the accessory genes (ureD, ureE, ureF, and ureG) in addition to the three structural genes (ureA, ureB, and ureC). These accessory genes are involved in functional assembly of the nickel-metallocenter for the enzyme. Characterization of ureF gene has been hindered, however, since the UreF protein is produced in only minute amount compared to other urease gene products. In order to overexpress the ureF gene, a recombinant pMAL-UreF plasmid was constructed from which the UreF was produced as a fusion with maltose-binding protein. The MBP-UreF fusion protein was purified by using an amylose-affinity column chromatography followed by an anion exchange column chromatography. Polyclonal antibodies raised against the fusion protein were purified and shown to specifically recognize both MBP and UreF peptides. The UreF protein was shown to be unstable when separated from MBP by digestion with factor Xa.

  • PDF

A Novel Integrative Expression Vector for Sulfolobus Species

  • Choi, Kyoung-Hwa;Hwang, Sungmin;Yoon, Naeun;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1503-1509
    • /
    • 2014
  • With the purpose of facilitating the process of stable strain generation, a shuttle vector for integration of genes via a double recombination event into two ectopic sites on the Sulfolobus acidocaldarius chromosome was constructed. The novel chromosomal integration and expression vector pINEX contains a pyrE gene from S. solfataricus P2 ($pyrE_{sso}$) as an auxotrophic selection marker, a multiple cloning site with histidine tag, the internal sequences of malE and malG for homologous recombination, and the entire region of pGEM-T vector, except for the multiple cloning region, for propagation in E. coli. For stable expression of the target gene, an ${\alpha}$-glucosidase-producing strain of S. acidocaldarius was generated employing this vector. The malA gene (saci_1160) encoding an ${\alpha}$-glucosidase from S. acidocaldarius fused with the glutamate dehydrogenase ($gdhA_{saci}$) promoter and leader sequence was ligated to pINEX to generate pINEX_malA. Using the "pop-in" and "pop-out" method, the malA gene was inserted into the genome of MR31 and correct insertion was verified by colony PCR and sequencing. This strain was grown in YT medium without uracil and purified by His-tag affinity chromatography. The ${\alpha}$-glucosidase activity was confirmed by the hydrolysis of $pNP{\alpha}G$. The pINEX vector should be applicable in delineating gene functions in this organism.

Optimal Growth Conditions for the Two Euryhaline Cyanobacterial Clones, Anabaena sp. CB-MAL21 and CB-MAL22 Isolated from Mankyeong Estuary, Korea

  • Kim, Young-Geel;Myung, Geum-Og;Yih, Won-Ho;Shin, Yoon-Keun
    • ALGAE
    • /
    • v.19 no.2
    • /
    • pp.145-148
    • /
    • 2004
  • As a result of the 2-year monthly monitoring of the phytoplankton community at 3 stations in Mankyeong Estuary, Korea, we learned that cyan bacterial species of the genus Anabaena occurred at most sampling points with huge salinity differences (0.1-32.5 psu). We isolated several clones of Anabaena spp. from the monitoring stations, and screen out two euryhaline and nitrogen-fixing Anabaena clones, CB-MAL21 and CB-MAL22. The two clones were grown under various environmental gradients such as temperature (20, 30, 35 and 40$^{\circ}C$), salinity (0, 2, 5, 15 and 30psu), and $PO_4^{3-}$-P concentration (0, 1.6, 8.0, 40 and 200 ${\mu}M$M). Growth of CB-MAL21 and CB-MAL22 was measured by daily monitoring of chlorophyll fluorescence from each experimental culture for more than three serial transfers. Both the two experimental clones did not grow at 0psu. Maximal growth rates of the two clones were markedly reduced at lower $PO_4^{3-}$-P concentrations showing negligible growth at 0 and 1.6 ${\mu}M$M. However, growth of CB-MAL21 was not affected by low $NO_3^--$ concentration in culture media, showing the nitrogen-fixing ability. Maximum biomass yields of the two clones decreased dramatically at 35 and 40$^{\circ}C$. Optimal growth conditions for the two experimental clones were determined to be 20-30$^{\circ}C$, 40 ${\mu}M$M $PO_4^{3-}$-P, and wide salinity range from 5.0 to over 30psu. Best growth of CB-MAL21 was shown at (20$^{\circ}C$-15psu), which is less saline and cooler condition than those (i.e., 30$^{\circ}C$-30psu) for the best growth of CB-MAL22. The euryhaline and nitrogen-fixing CB-MAL21 strain thus can be a candidate laboratory culture for the future cyan bacterial marine biotechnology in temperate coastal waters.

Drug adsorption and anti-microbial activity of functionalized multiwalled carbon nanotubes

  • Saxena, Megha;Mittal, Disha;Boudh, Richa;Kumar, Kapinder;Verma, Anita K.;Saxena, Reena
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.667-678
    • /
    • 2021
  • Multiwalled carbon nanotubes (MWCNTs) were first oxidized (O-CNTs) to introduce carboxylic group and then further functionalized (F-CNTs) with m-phenylenediamine, which was confirmed by FTIR and SEM. It was used as an effective adsorbent for the adsorptive removal of diclofenac drug from water. Under optimum conditions of pH 6, stirring speed 600 rpm, the maximum adsorption capacity obtained was 532 mg g-1 which is superior to the values reported in literature. The adsorption was quite rapid as 25 mg L-1 drug solution was adsorbed in only 3 minutes of contact time with 10 mg of adsorbent dose. The adsorption kinetics and isotherms were studied using various models to evaluate the adsorption process. The results showed that the data best fit in kinetics pseudo-second order and Langmuir isotherm model. Furthermore, the oxidized and functionalized MWCNTs were applied on gram-negative Escherichia coli and gram-positive Staphylococcus aureus using agar disc diffusion assay to validate their anti-microbial activity. Results were unique as both oxidized and functionalized MWCNTs were equally active against both E. coli and S. aureus. The newly synthesized F-CNTs have great potential in water treatment, with their dual action of removing drug and pathogens from water, makes it potential applicant to save environment.

Nucleotide Sequence and Cloning of sfs4, One of the Genes Involved in the CRP-Dependent Expression of E. coli mal Genes. (CRP 의존성 maltose 대사 촉진 유전자 sfs4의 클로닝 및 염기배열 결정)

  • Chung, Soo-Yeol;Cho, Moo-Je;Jeong, Hee-Tae;Choi, Yong-Lark
    • Applied Biological Chemistry
    • /
    • v.38 no.2
    • /
    • pp.111-117
    • /
    • 1995
  • In Escherichia coli, CRP forms a complex with cAMP and acts as a transcriptional regulator of many genes, including sugar metabolism operons. The E. coli MK2001, which is introduced the altered crp, is functional in the expression of lac, ara and man, in the absence of cAMP. However, the expression of mal gene is fully activated by the addition of cAMP or cGMP. The object of the study is cloning of the sfs (sugar fermentation stimulation) genes, which was involved in regulation of mal gene expression with the altered crp gene, and structural analysis and characterization of the genes at the molecular level. We have cloned 5 different E. coli genes which stimulate the maltose metabolism in a crp, cya::km (MK2001) background. Newly identified genes were designated as sfs. One of the sfs genes (pPC1), located at the 53.2 min map position on the E. coli chromosome, was further analyzed. Expression of the genes, which is involved in maltose metabolism, malQ (amylomaltase), was increased to 5.8-fold in the presence of a plasmid, pAP5, containing the subcloned sfs4 gene. The nucleotide seguence of a common 2,126 bp segment of the pPCM1 was determined and two open reading frames (ORF1 and ORF2) were detected. The ORF1 encodes the sfs4 gene and ORF2 encodes a truncated protein. Potential CRP binding site is located in the upstream of the putative promoter in the regulatory region. Expression of the cloned sfs4 gene was positively regulated by the cAMP-CRP complex.

  • PDF