• Title/Summary/Keyword: Major ion

검색결과 712건 처리시간 0.029초

작약 레드참 꽃잎의 이온화원-푸리에 변환 질량분석과 기능성 연구 (Fourier Transform Ion Cyclotron Resonance (FT-ICR) MASS Spectrophotometric Analysis of Flower Petal from Paeonia lactiflora cv. ‘Red Charm’ and Evaluation of its Functional Activity)

  • 김준현;최용복;이하정;김용희;김준환;심정민;손영선
    • 한국자원식물학회지
    • /
    • 제29권5호
    • /
    • pp.588-597
    • /
    • 2016
  • Little attention has been paid to the functional aspect of the flower petal of Paeonia lactiflora, compared to that of its root. To determine the components of flower petal of Paeonia lactiflora, we conducted the Fourier transform ion cyclotron resonance (FT-ICR) MASS spectrophotometric analysis. We detected the 24 different types of ingredients from the 70% ethanol extracts of flower petal of peonia lactiflora cv. ‘Red Charm’. The main compounds were quercetin glucopyranosides, methyl gallate, paonioflolol and kaemperol glucopyranosides. We further tested its functional activity. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of the extracts was 87.9-90.4% at 0.1mg/ml. This result showed that these flower extracts have approximately 5-fold stronger antioxidant potential than a previous report with root extracts (Bang et al. 1999). The result of tyrosinase inhibition assay of Paeonia lactflora extract was almost similar to that of arbutin except significantly higher effect in the coral sunset extract at 0.1% concentration. Hyaluronidase inhibition assay showed 76.5% inhibition at 5% concentration of this flower extract, indicating that Peaonia lactiflora flower extracts have the major anti-inflammatory, anti-oxidant and brightening effects. Taken together, these results suggest these three Paeonia lactiflora species extracts might provide the basis to develop a new natural brightening agent.

Direct Analysis in Real Time Mass Spectrometry (DART-MS) Analysis of Skin Metabolome Changes in the Ultraviolet B-Induced Mice

  • Park, Hye Min;Kim, Hye Jin;Jang, Young Pyo;Kim, Sun Yeou
    • Biomolecules & Therapeutics
    • /
    • 제21권6호
    • /
    • pp.470-475
    • /
    • 2013
  • Ultraviolet (UV) radiation is a major environmental factor that leads to acute and chronic reactions in the human skin. UV exposure induces wrinkle formation, DNA damage, and generation of reactive oxygen species (ROS). Most mechanistic studies of skin physiology and pharmacology related with UV-irradiated skin have focused on proteins and their related gene expression or single-targeted small molecules. The present study identified and analyzed the alteration of skin metabolites following UVB irradiation and topical retinyl palmitate (RP, 5%) treatment in hairless mice using direct analysis in real time (DART) time-of-flight mass spectrometry (TOF-MS) with multivariate analysis. Under the negative ion mode, the DART ion source successfully ionized various fatty acids including palmitoleic and linolenic acid. From DART-TOF-MS fingerprints measured in positive mode, the prominent dehydrated ion peak (m/z: 369, M+H-$H_2O$) of cholesterol was characterized in all three groups. In positive mode, the discrimination among three groups was much clearer than that in negative mode by using multivariate analysis of orthogonal partial-least squares-discriminant analysis (OPLS-DA). DART-TOF-MS can ionize various small organic molecules in living tissues and is an efficient alternative analytical tool for acquiring full chemical fingerprints from living tissues without requiring sample preparation. DART-MS measurement of skin tissue with multivariate analysis proved to be a powerful method to discriminate between experimental groups and to find biomarkers for various experiment models in skin dermatological research.

Investigation of the observed solar coronal plasma in EUV and X-rays in non-equilibrium ionization state

  • Lee, Jin-Yi;Raymond, John C.;Reeves, Katharine K.;Shen, Chengcai;Moon, Yong-Jae
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.53.1-53.1
    • /
    • 2018
  • During a major solar eruption, the erupting plasma is possibly out of the equilibrium ionization state because of its rapid heating or cooling. The non-equilibrium ionization process is important in a rapidly evolving system where the thermodynamical time scale is shorter than the ionization or recombination time scales. We investigate the effects of non-equilibrium ionization on EUV and X-ray observations by the Atmospheric Imaging Assembly (AIA) on board Solar Dynamic Observatory and X-ray Telescope (XRT) on board Hinode. For the investigation, first, we find the emissivities for all the lines of ions of elements using CHIANTI 8.07, and then we find the temperature responses multiplying the emissivities by the effective area for each AIA and XRT passband. Second, we obtain the ion fractions using a time-dependent ionization model (Shen et al. 2015), which uses an eigenvalue method, for all the lines of ion, as a function of temperature, and a characteristic time scale, $n_et$, where $n_e$ and t are density and time, respectively. Lastly, the ion fractions are multiplied to the temperature response for each passband, which results in a 2D grid for each combination of temperature and the characteristic time scale. This is the set of passband responses for plasma that is rapidly ionized in a current sheet or a shock. We investigate an observed event which has a relatively large uncertainty in an analysis using a differential emission measure method assuming equilibrium ionization state. We verify whether the observed coronal plasmas are in non-equilibrium or equilibrium ionization state using the passband responses.

  • PDF

참치자숙액 추출물 중의 히스티딘계 저분자 펩타이드 및 산화촉진물질 함량에 미치는 추출방법의 영향 (Effects of Extraction Method on the Histidine Containing Low Molecular Weight Peptide and Pro-oxidants Contents of Tuna Boiled Extracts)

  • 강옥주
    • 한국식품조리과학회지
    • /
    • 제24권3호
    • /
    • pp.349-357
    • /
    • 2008
  • In an effort to augment extractability of carnosine and anserine at the levels of pro-oxidants such as iron and protein in Tuna boiled extracts(Skipjack, Yellowfin and Bigeye), we assessed the effects of heated and ion exchange chromatography(IEC) and ultrafiltration(UF) using a MW 500 cut-off(500 MWCO). We also evaluated the antioxidant activity of these extracts processed as free radical scavengers and reducing agents. Tuna boiled extracts of dark and ordinary muscle protein and total iron were reduced, whereas carnosine and anserine concentrations and antioxidant activity were increased. The carnosine and anserine concentrations of the ion exchange and permeate UF(IEC-UF) extracts were higher than those observed in the heated and permeate UF(heat-UF), whereas the protein and total iron contents were lower than that observed in the heat-UF. The quantity of carnosine and anserine in ordinary muscle was higher than that detected in dark muscle. HPLC analysis and SDS-PAGE were shown to removes the effect of UF on high molecular weight impurities in the tuna boiled extracts. The major free amino acids(FFAs) from Skipjack, Yellowfin and Bigeye tuna IEC-UF extracts were anserine, histidine and carnosine. These three peptides constituted more than 80~85%. of the detected amino acid. The IEC-UF treated ordinary muscle extracts evidenced the highest levels of DPPH radical scavenging activity and the highest levels of reducing power among the various extracts. The IEC-UF extracts evidenced a DPPH radical scavenging effect equal to that of 1mM ascorbic acid.

Dependence of the lithium ionic conductivity on the B-siteion substitution in $(Li_{0.5}La_{0.5})Ti_{1-x}M_xO_3$

  • Kim, Jin-Gyun;Kim, Ho-Gi
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제11권11호
    • /
    • pp.9-17
    • /
    • 1998
  • The dependence of the ionic conductivity on the B-site ion substitution in (Li0.5La0.5)Ti1-xMxO3 (M=Sn, Zr, Mn, Ge) system has been studied. Same valence state and various electronic configuration and ionic radius of Sn4+, Zr4+, Mn4+ and Ge4+(4d10(0.69$\AA$), 4p6(0.72$\AA$), 3d10(0.54$\AA$) and 3d3(0.54$\AA$), respectively) induced the various crystallographic variaton with substitutions. So it was possibleto investigate the crystallographic factor which influence the ionic conduction by observing the dependence of the conductivity on the crystallographic factor which influence the ionic conduction by observing the dependence of the conductivity on the crystallographic variations. We found that the conductivity increased with decreasing the radii of B-site ions or vice versa and octahedron distortion disturb the ion conduction. The reason for this reciprocal proportion of conductivity on the radius of B-site ions has been examined on the base of the interatomic bond strength change due to the cation substitutions. The results were good in agreement with the experimental results. Therefore it could be concluded that the interatomic bond strength change due to the cation substitutions may be the one of major factors influencing the lithium ion conductivity in perovskite(Li0.5La0.5) TiO3system.

  • PDF

카베딜롤(25mg)정제의 생물학적 동등성 및 약물동태연구 (Bioequivalence and Pharmacokinetics of Carvedilol (25mg) Tablets in Volunteers)

  • 우수경;김호순;강종성;권광일
    • 약학회지
    • /
    • 제45권6호
    • /
    • pp.650-655
    • /
    • 2001
  • Carvedilol is a nonselective $\beta$-blocking agent with vasodilating properties that are attributed mainly to its blocking activity at $\alpha$$^{1}$-receptors. Carvedilol is used in the treatment of mild to moderate hypertention and angina pectoris and is often used in combination with other drugs. This study was carried out to evaluate the bioequivalence and pharmacokinetics of two carvedilol 25mg tablet formulations according to the guidelines of Korea Food and Drug Administration (KFDA). Twenty healthy volunteers are enrolled and received a single dose (25mg as carvedilol) of each drug in the fasting state, in a randomized 2-way crossover design. After oral administration, blond samples were collected for a period of 30 hours. Plasma concentrations of carvedilol were determined by a rapid and sensitive HPLC method with spectrofluorometric detection. The major pharmacokinetic parameters such as AU $C_{0-}$30hr/, AU $C_{inf}$ , $C_{max}$, $T_{max}$, $t_{1}$2 / Cl/F and V $_{\beta}$//F were calculated. ANOVA test and t-test were utilized for the statistical analysis of each parameter. The results showed that the differences in AU $C_{0-}$30hr/, $C_{max}$ and $T_{max}$ between two were ~5.66, 1.74 and 0.00%, respectively. Minimum detectable differences ($\Delta$) at $\alpha$=0.05 were less than$\pm$ 20% except $T_{max}$ (8.44, 18.36, and 33.86%, respectively). The 90% confidence intervals of all parameters were within $\pm$20% (-10.60~ -0.72, -9.00~12.49 and -19.81~19.81%, respectively). Therefore, it is concluded that the two formulations are bioequivalent for both the extent and the rate of absorption after single dose administration.ation.ion.ion.ation.ion.n.

  • PDF

염 함유 폐수처리수에 대한 Daphnia magna 및 Vibrio fischeri 급성독성 비교연구 (Comparative Study on Acute Toxicity of Treated Effluent Containing Salt using Daphnia magna and Vibrio fischeri)

  • 김종민;신기식;유순주;이정서;김웅기
    • 한국물환경학회지
    • /
    • 제31권5호
    • /
    • pp.453-459
    • /
    • 2015
  • This paper aims to evaluate the results of acute toxicity testing with Daphnia mag$Na^+$ and Vibrio fischeri and characteristics of ionic substance of treated effluent which contained salt. Acute toxicity with Daphnia mag$Na^+$ and Vibrio fischeri and salinity of 19 samples (4 business categories) were a$Na^+$lysed. Salinity of effluent could explain the fluctuation of toxicity with D. mag$Na^+$ about 66% ~ 91% ($r^2=0.66{\sim}0.91$). The results of acute toxicity testing with V. fischeri of treated effluent (aggregate manufacture facilities) did not indicate toxicity (TU = 0), whereas that of chemical manufacture facilities indicated toxicity. V. fischeri, a candidate test organism, seemed suitable test organism for acute toxicity testing of effluent except high salinity (above 65‰ ~ 70‰) in aggregate manufacture facilities (nonmetalic minerals facilities). The performance of ion composition about treated effluent of surveyed facilities indicated that ion concentration of $Na^+$ (5,740 mg/L) and $Cl^-$ (9,727 mg/L) showed high level among 6 major ions ($Na^+$, $K^+$, $Ca^{2+}$, $Mg^{2+}$, $SO_4{^{2-}}$, $Cl^-$) in effluent of nonmetalic minerals facilities. In addition, Clion seemed to influence the D. magna survival rather than $Na^+$ ion.

Effects of Ginsenosides on $GABA_A$ Receptor Channels Expressed in Xenopus Oocytes

  • Choi, Se-Eun;Choi, Seok;Lee, Jun-Ho;Paul J.Whiting;Lee, Sang-Mok;Nah, Seung-Yeol
    • Archives of Pharmacal Research
    • /
    • 제26권1호
    • /
    • pp.28-33
    • /
    • 2003
  • Ginsenosides, major active ingredients of Panax ginseng, are known to regulate excitatory ligand-gated ion channel activity such as nicotinic acetylcholine and NMDA receptor channel activity. However, it is not known whether ginsenosides affect inhibitory ligand-gated ion channel activity. We investigated the effect of ginsenosides on human recombinant $GABA_A$ receptor (${\alpha}_1{\beta}_1{\gamma}_{2s}$) channel activity expressed in Xenopus oocytes using a two-electrode voltage-clamp technique. Among the eight individual ginsenosides examined, namely, $Rb_1$, $Rb_2$, Rc, Rd, Re, Rf, $Rg_1$ and $Rg_2$, we found that Rc most potently enhanced the GABA-induced inward peak current ($I_{GABA}$). Ginsenoside Rc alone induced an inward membrane current in certain batches of oocytes expressing the $GABA_A$ receptor. The effect of ginsenoside Rc on $I_{GABA}$ was both dose-dependent and reversible. The half-stimulatory concentration ($EC_{50}$) of ginsenoside Rc was 53.2$\pm$12.3 $\mu$M. Both bicuculline, a $GABA_A$ receptor antagonist, and picrotoxin, a $GABA_A$ channel blocker, blocked the stimulatory effect of ginsenoside Rc on $I_{GABA}$. Niflumic acid (NFA) and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), both $CI^{-1}$ channel blockers, attenuated the effect of ginsenoside Rc on I$I_{GABA}$. This study suggests that ginsenosides regulated $GABA_A$ receptor expressed in Xenopus oocytes and implies that this regulation might be one of the pharmacological actions of Panax ginseng.

POLYMER SURFACE MODIFICATION WITH PLASMA SOURCE ION IMPLANTATION TECHNIQUE

  • Han, Seung-Hee;Lee, Yeon-Hee;Lee, Jung-Hye;Yoon, Jung-Hyeon;Kim, Hai-Dong;Kim, Gon-ho;Kim, GunWoo
    • 한국표면공학회지
    • /
    • 제29권5호
    • /
    • pp.345-349
    • /
    • 1996
  • The wetting property of polymer surfaces is very important for practical applications. Plasma source ion implantation technique was used to improve the wetting properties of polymer surfaces. Poly(ethylene terephtalate) and other polymer sheets were mounted on the target stage and an RF plasma was generated by means of an antenna located inside the vacuum chamber. High voltage pulses of up to -10kV, 10 $\mu$sec, and up to 1 kHz were applied to the stage. The samples were implanted for 5 minutes with using Ar, $N_2,O_2,CH_4,CF_4$ and their mixture as source gases. A contact angle meter was used to measure the water contact angles of the implanted samples and of the samples stored in ambient conditions after implantation. The modified surfaces were analysed with Time-Of-Flight Mass Spectrometer (TOF-SIMS) and Auger Electron Spectroscopy (AES). The oxygen-implanted samples showed extremely low water contact angles of $3^{\circ}C$ compared to $79^{\circ}C$ of unimplanted ones. Furthermore, the modified surfaces were relatively stable with respect to aging in ambient conditions, which is one of the major concerns of the other surface treatment techniques. From TOF-SIMS analysis it was found that oxygen-containing functional groups had been formed on the implanted surfaces. On the other hand, the $CF_4$-implanted samples turned out to be more hydro-phobic than unimplanted ones, giving water contact angles exceeding $100^{\circ}C$ . The experiment showed that plasma source ion implantation is a very promising technique for polymer surface modification especially for large area treatment.

  • PDF

Cathodic Properties of $LiCoO_2$ Synthesized by a Sol-Gel Method for Lithium Ion Battery

  • 조봉준;정의덕;심윤보
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권1호
    • /
    • pp.39-44
    • /
    • 1998
  • $LiCoO_2$ powder was synthesized in an aqueous solution by a sol-gel method and used as a cathode active material for a lithium ion rechargeable battery. The layered $LiCoO_2$ powders were prepared by igniting in air for 12 hrs at 600 ℃ $(600-LiCoO_2)$ and 850 ℃ $(850-LiCoO_2)$. The structure of the $LiCoO_2$ powder was assigned to the space group R bar 3 m (lattice parameters a=2.814 Å and c=14.04Å). The SEM pictures of $600-LiCoO_2$ revealed homogeneous and fine particles of about 1 μm in diameter. Cyclic voltammograms (CVs) of $600-LiCoO_2$ electrode displayed a set of redox peaks at 3.80/4.05 V due to the intercalation/deintercalation of the lithium ions into/out of the $LiCoO_2$ structure. CVs for the $850-LiCoO_2$ electrode had a major set of redox peaks at 3.88/4.13 V, and two small set of redox peaks at 4.18/4.42 V and 4.05/4.25 V due to phase transitions. The initial charge-discharge capacity was 156-132 mAh/g for the $600-LiCoO_2$ electrode and 158-131 mAh/g for the $850-LiCoO_2$ electrode at the current density of 0.2 mA/cm2. The cycleability of the cell consisting of the $600-LiCoO_2$ electrode was better than that of the $850-LiCoO_2$. The diffusion coefficient of the $Li^+$ ion in the $600-LiCoO_2$ electrode was calculated as $4.6{\times}10^{-8}\; cm^2/sec$.