• Title/Summary/Keyword: Major ion

Search Result 708, Processing Time 0.042 seconds

Capacitance Enhancement and Evaluation of Gold-Deposited Carbon Nanotube Film Ion-Selective Electrode (금 입자 증착된 탄소나노튜브의 커패시턴스 증가 및 박막형 이온 선택성 전극으로서의 특성 평가)

  • Do Youn Kim;Hanbyeol Son;Hyo-Ryoung Lim
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.310-317
    • /
    • 2023
  • Small-film-type ion sensors are garnering considerable interest in the fields of wearable healthcare and home-based monitoring systems. The performance of these sensors primarily relies on electrode capacitance, often employing nanocomposite materials composed of nano- and sub-micrometer particles. Traditional techniques for enhancing capacitance involve the creation of nanoparticles on film electrodes, which require cost-intensive and complex chemical synthesis processes, followed by additional coating optimization. In this study, we introduce a simple one-step electrochemical method for fabricating gold nanoparticles on a carbon nanotube (Au NP-CNT) electrode surface through cyclic voltammetry deposition. Furthermore, we assess the improvement in capacitance by distinguishing between the electrical double-layer capacitance and diffusion-controlled capacitance, thereby clarifying the principles underpinning the material design. The Au NP-CNT electrode maintains its stability and sensitivity for up to 50 d, signifying its potential for advanced ion sensing. Additionally, integration with a mobile wireless data system highlights the versatility of the sensor for health applications.

Investigation of Adhesion Mechanism at the Metal-Organic Interface Modified by Plasma Part I

  • Sun, Yong-Bin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.31-34
    • /
    • 2002
  • For the mold die sticking mechanism, the major explanation is that the silica as a filler in EMC (epoxy molding compound) wears die surface to be roughened, which results in increase of adhesion strength. As the sticking behavior, however, showed strong dependency on the EMC models based on the experimental results from different semiconductor manufacturers, chemisorption or acid-base interaction is apt to be also functioning as major mechanisms. In this investigation, the plasma source ion implantation (PSII) using $O_2, N_2$, and $CF_4$ modifies sample surface to form a new dense layer and improve surface hardness, and change metal surface condition from hydrophilic to hydrophobic or vice versa. Through surface energy quantification by measuring contact angle and surface ion coupling state analysis by Auger, major governing mechanism for sticking issue was figured out to be a complex of mechanical and chemical factors.

  • PDF

Discharge Characteristics of Large-Area High-Power RF Ion Source for Neutral Beam Injector on Fusion Devices

  • Chang, Doo-Hee;Park, Min;Jeong, Seung Ho;Kim, Tae-Seong;Lee, Kwang Won;In, Sang Ryul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.241.1-241.1
    • /
    • 2014
  • The large-area high-power radio-frequency (RF) driven ion sources based on the negative hydrogen (deuterium) ion beam extraction are the major components of neutral beam injection (NBI) systems in future large-scale fusion devices such as an ITER and DEMO. Positive hydrogen (deuterium) RF ion sources were the major components of the second NBI system on ASDEX-U tokamak. A test large-area high-power RF ion source (LAHP-RaFIS) has been developed for steady-state operation at the Korea Atomic Energy Research Institute (KAERI) to extract the positive ions, which can be used for the NBI heating and current drive systems in the present fusion devices, and to extract the negative ions for negative ion-based plasma heating and for future fusion devices such as a Fusion Neutron Source and Korea-DEMO. The test RF ion source consists of a driver region, including a helical antenna and a discharge chamber, and an expansion region. RF power can be transferred at up to 10 kW with a fixed frequency of 2 MHz through an optimized RF matching system. An actively water-cooled Faraday shield is located inside the driver region of the ion source for the stable and steady-state operations of RF discharge. The characteristics and uniformities of the plasma parameter in the RF ion source were measured at the lowest area of the expansion bucket using two RF-compensated electrostatic probes along the direction of the short- and long-dimensions of the expansion region. The plasma parameters in the expansion region were characterized by the variation of loaded RF power (voltage) and filling gas pressure.

  • PDF

Dominance effects of ion transport and ion transport regulator genes on the final weight and backfat thickness of Landrace pigs by dominance deviation analysis

  • Lee, Young?Sup;Shin, Donghyun;Song, Ki?Duk
    • Genes and Genomics
    • /
    • v.40 no.12
    • /
    • pp.1331-1338
    • /
    • 2018
  • Although there have been plenty of dominance deviation analysis, few studies have dealt with multiple phenotypes. Because researchers focused on multiple phenotypes (final weight and backfat thickness) of Landrace pigs, the classification of the genes was possible. With genome-wide association studies (GWASs), we analyzed the additive and dominance effects of the single nucleotide polymorphisms (SNPs). The classification of the pig genes into four categories (overdominance in final weight, overdominance in backfat thickness and overdominance in final weight, underdominance in backfat thickness, etc.) can enable us not only to analyze each phenotype's dominant effects, but also to illustrate the gene ontology (GO) analysis with different aspects. We aimed to determine the additive and dominant effect in backfat thickness and final weight and performed GO analysis. Using additive model and dominance deviation analysis in GWASs, Landrace pigs' overdominant and underdominant SNP effects in final weight and backfat thickness were surveyed. Then through GO analysis, we investigated the genes that were classified in the GWASs. The major GO terms of the underdominant effects in final weight and overdominant effects in backfat thickness were ion transport with the SLC8A3, KCNJ16, P2RX7 and TRPC3 genes. Interestingly, the major GO terms in the underdominant effects in the final weight and the underdominant effects in the backfat thickness were the regulation of ion transport with the STAC, GCK, TRPC6, UBASH3B, CAMK2D, CACNG4 and SCN4B genes. These results demonstrate that ion transport and ion transport regulation genes have distinct dominant effects. Through GWASs using the mode of linear additive model and dominance deviation, overdominant effects and underdominant effects in backfat thickness was contrary to each other in GO terms (ion transport and ion transport regulation, respectively). Additionally, because ion transport and ion transport regulation genes are associative with adipose tissue accumulation, we could infer that these two groups of genes had to do with unique fat accumulation mechanisms in Landrace pigs.

Theoretical Study on Polymerization of Oxepane High Explosives

  • Kim, Joon-Tae
    • Journal of Integrative Natural Science
    • /
    • v.5 no.3
    • /
    • pp.175-181
    • /
    • 2012
  • Oxepane high explosives substituted to explosive group such as azido, nitrato and hydrazino are investigated theoretically the acid catalyzed reaction using the semiempirical MINDO/3, MNDO and AM1 methods to use as the guidelines of high explosives. The nucleophilicity and basicity of oxepane high explosives can be explained by the value of negative charge on oxygen atom of oxepane and the reactivity in propagation step can be represented by the value of positive charge on carbon atom and low electrophile LUMO energy. It was known that carbenium ion was favorable due to the stable energy (19.507~32.101 Kcal/mol) between oxonium ion and carbenium ion in the process of cyclic oxonium ion of oxepane high explosives being converted to open carbenium ion in oxepane high explosives. The value of concentration of cyclic oxonium ion and open carbenium ion in equilibrium status was found to be a major determinant of mechanism, it was expected to react faster in the prepolymer propagation step in SN1 mechanism than in that of $S_N2$.

A Study on the Chemical Characteristics of Acid Rain in Taejon City (대전지역 산성강우의 화학적 특성에 관한 연구)

  • 구자공;박경렬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.2
    • /
    • pp.147-153
    • /
    • 1993
  • From March 1990 to August 1991, every each 5mm bulk precipitation samples were collected at one residental area in Taejon City to investigate chemical characteristics of acid rain. Major ion concentrations of rain samples $(pH, SO_4^{2-}, NO_3^-, CL^-, NH_4^+, Na^+, K^+, Ca^{2+}, Mg^{2+})$ were analysed and compared with the concentration of air pollutants (T. S. P, $SO_2, NO_x$) that were measured by Ministry of Environment. The results of statistical analysis are as followings. Rain pH was relatively high on October and January and relatively low on August, November and February. Major anion is sulfate, and it's concentration is 2.36 times higher than nitrate's, and major cations are ammonium, sodium and calcium ion. Monthly variation of sulfate and calcium concentrations are higher than the others. Ion concentration and rain pH were correlated negatively with rainfall amount. Major ions in rain samples were $SO_4^{2-}, NO_3^-, NH_4^+, Ca^{2+}$ and regression equations are proposed by multiple regression of measured data. Also, regression equation between air pollutants(T. S. P, $SO_2$) and $SO_4^{2-}, Na^+, K^+, Ca^{2+}, Mg^{2+} ions in rain samples were made. From this wer can predict rain pH.

  • PDF

Evaluation of Chloride Ion Penetration Characteristics for Concrete Structures at Coastal Area (해안지역 콘크리트 구조물의 염소이온침투특성 평가)

  • Han, Sang-Hun;Yi, Jin-Hak;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.11-17
    • /
    • 2011
  • A major source of durability problems in concrete structures is the corrosion of steel by the damage of passivity layer around steel bars. As chloride ion penetration is major cause of the destruction of passivity layer, evaluation of depth and concentration profile of chloride ion is the essential factor for the service-life estimation of concrete structure. To estimate chloride ion penetration characteristics, this paper on the basis of in-situ experimental data investigated the depth and concentration profile of chloride ion penetration. The core specimens are obtained at air-zone, splash zone, and tidal zone in Wando, Masan, Incheon, Gwangyang, and donghae harbors. Colorimentric method measured the chloride ion penetration depth and ASTM C 114 evaluated the concentration profile of chloride ion. Based on experimental data, the influence of harbor location and exposure condition on chloride ion penetration is evaluated.

A Study on Ion Extraction Characteristics of Ceramics by Cleaning Agents (보존처리용 세척제에 대한 토기의 이온용출 특성연구)

  • Park, Dae-Woo;Kang, Hyun-Mi;Nam, Byeong-Jik;Jang, Sung-Yoon;Ham, Chul-Hee
    • 보존과학연구
    • /
    • s.31
    • /
    • pp.43-57
    • /
    • 2010
  • This study intends to provide quantitative data about the extraction characteristics of major elements of earthenware by executing soaking test of cleaning agents. It aims at providing basic data for the stability assessment when applying the cleaning agents for conserving earthenware. The data will be extracted from the analysis of co-relationship between the physical characteristics and the ion extraction characteristics. XRD analysis displayed that AT-1, AT-2 and AT-3 which did not generate mullite were fired at lower than 1,000 whereas AT-3 and AT-5 that included mullite were higher than 1,000. The degree of absorption was AT-4 > AT-2 > AT-1 > AT-3 > AT-5 in order and the correlation between the degree of absorption and firing temperature of earthenware displayed a positive correlation. Extraction amount of oxalic acid which was used for the removing iron oxide was AT-1 > AT-2 AT-4 > AT-3 > AT-5 in order. and the ion extraction data displayed that there is a positive correlation with absorption level. However AT-1 and AT-2 which were fired at lower temperature showed that there was no correlation between the ion extraction characteristics and absorption level. Ion extraction of citric acid produced little amount compared with the one of oxalic acid, yet it caused less damage to earthenware than oxalic acid when it applied. The result of ion extraction level in the absorption test displayed that Fe had higher level than in Si, Al from the test for both oxalic acid and citric acid. Based on the regression analysis of the data from the previous studies, the physical characteristics of the earthenware and ion extraction level, further studies will be conducted on the predicting technique on the extraction characteristics of major elements of earthenware samples for the conservation in future.

  • PDF

Treatment Features of Ni Wastewater by using Coffee Grounds as the Adsorbent (커피 찌꺼기를 흡착제로 한 니켈 폐수 처리 특성)

  • Seo, Myung-Soon;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.1
    • /
    • pp.14-20
    • /
    • 2005
  • A feasibility study has been conducted regarding the application of waste coffee grounds as an adsorbent for the treatment of nickel ion containing wastewater. The major variables which considered to influence the adsorbability of nickel ion were its initial concentration, reaction temperature, pH, and coexisting ion. The specific surface area of coffee grounds used in the experiment was found to be ca. $39.67m^2/g$, which suggesting its potential applicability as an adsorbent due to its relatively high surface area. In the experimental conditions, more than 90% of the initial amount of nickel ion was shown to adsorb within 15 minutes and equilibrium in adsorption was attained after 3 hours. The adsorption behavior of nickel ion was well explained by Freundlich model and kinetics study showed that the adsorption reaction was second-order. Adsorption was reduced with temperature and its change of enthalpy in standard state was estimated to be -807.05 kJ/mol. Arrhenius equation was employed for the calculation of the activation energy of adsorption and nickel ion was observed to adsorb on coffee grounds exoentropically based on thermodynamic estimations. As pH rose, the adsorption of nickel ion was diminished presumably due to the formation of cuboidal complex with hydroxide ion and the coexistence of cadmium ion was found to decrease the amount of nickel ion adsorption, which was proportional to the concentration of cadmium ion.

A Study on the Assessment of Pollution Level of Precipitation at Kangwha, 1992 (江華地域 降水의 汚染度 評價에 關한 硏究)

  • 강공언;강병욱;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.1
    • /
    • pp.57-68
    • /
    • 1995
  • Precipitation samples were collected by a wet-only automatic acid precipitation sampler at Kangwha island on the western coast in Korea, through January until December 1992. pH, electric conductivity and the concentrations of major water-soluble ion components such as N $H_{4}$$^{+}$, $Ca^{2+}$, $K^{+}$, $Mg^{2+}$, N $a^{+}$, N $O_{3}$$^{[-10]}$ , S $O_{4}$$^{2-}$ and C $l^{[-10]}$ were measured. From the result of checking the validity for assesment of pollution level of precipitation samples by pH using correlation analysis between pH and major components, and t-test of chemical composition between acid rain and non-acid rain, pH proved to be not satisfactory for its pillution level. A more comprehensive method is therefore required. In order to estimate the monthly analytical result of chemical composition of precipitation samples comprehensively, a cluster analysis was used among the various multivariate statistical analysis. As a result of making a cluster analysis for separating the monthly precipitation samples into homogeneous patterns by setting the concentrations of nine major water-soluble ion components as a variable, three homogeneous patterns were obtained. The first pattern was a group of months having average ion concentrations, the second a guoup of months having low ion concentration, and the third a group of months having high ion concentrations. Thus, it was indicated that the pollution level of precipitation was higher on February and lower on May, June, August and September than the other months. As a result, this analysis method could be estimated the chemical coposition of precipitation regionally as well as monthly.monthly.

  • PDF