• Title/Summary/Keyword: Major flow direction

Search Result 113, Processing Time 0.022 seconds

A study on the NOx emission characteristics with combustion air flow conditions in air-staged coal burner (공기다단 석탄버너에서 연소공기 유동조건에 따른 NOx 배출특성에 관한 연구)

  • Kim, Hyuk-Je;Song, Si-Hong;Kim, Sang-Hyeun;Lee, Ik-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.379-384
    • /
    • 2003
  • Coal-burning utilities are facing a major NOx control compliance challenge due to the heavy emission regulation. In response to this challenge, some applicative technologies to effectively reduce NOx are developed and applied in the pulverized coal power plants. One of these is low NOx burner(LNB) equipped with multi-staged air register. In this study, NOx emission rate and flame shapes are investigated with secondary and tertiary air flow conditions in air staged coal burner, and the optimal windows of flow conditions to minimize NOx emission rate are found out. The test conditions treated in this study are the flow rate, swirl direction and intensity and throat injection velocity of secondary and tertiary air.

  • PDF

Computational Design of Bifurcation: A Case Study of Darundi Khola Hydropower Project

  • Koirala, Ravi;Chitrakar, Sailesh;Neopane, Hari Prasad;Chhetri, Balendra;Thapa, Bhola
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Bifurcation refers to wye division of penstock to divide the flow symmetrically or unsymmetrically into two units of turbine for maintaining economical, technical and geological substrates. Particularly, water shows irrelevant behavior when there is a sudden change in flow direction, which results into the transition of the static and dynamic behavior of the flow. Hence, special care and design considerations are required both hydraulically and structurally. The transition induced losses and extra stresses are major features to be examined. The research on design and analysis of bifurcation is one of the oldest topics related to R&D of hydro-mechanical components for hydropower plants. As far as the earlier approaches are concerned, the hydraulic designs were performed based on graphical data sheet, head loss considerations and the mechanical analysis through simplified beam approach. In this paper, the multi prospect approach for design of Bifurcation, incorporating the modern day's tools and technology is identified. The hydraulic design of bifurcation is a major function of dynamic characteristics of the flow, which is performed with CFD analysis for minimum losses and better hydraulic performances. Additionally, for the mechanical design, a simplified conventional design method as pre-estimation and Finite Element Method for a relevant result projections were used.

3-DIMENSIONAL FLOW FIELD ANALYSIS AND TIP SHAPE DESIGN IN A WIND TURBINE BLADE (풍력 발전기 블레이드에 걸친 3차원 유동장 해석 및 팁 형상 설계)

  • Jeong, Jae-Ho;Yoo, Cheol;Lee, Jung-Sang;Kim, Ki-Hyun;Choi, Jae-Woong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.243-248
    • /
    • 2011
  • The 3-dimensional flow field has been investigated by numerical analysis in a 2.5MW wind turbine blade. Complicated and separated flaw phenomena in the wind turbine blade were captured by the Reynolds-averaged Navier-Stokes(RANS) steady flaw simulation using general-purpose code, CFX and the mechanism of vortex structure behavior is elucidated. The vortical flow field in a wind turbine rotor is dominated by the tip vortex and hub separation vortex. The tip vortex starts to be formed near the blade tip leading edge. As the tip vortex develops in the tangential direction, interacting with boundary layer from the blade tip trailing edge. The hub separation vortex is generated near the blade hub leading edge and develops nearly in the span-wise direction. Furthermore, 3-dimensional blade tip shape has been designed for increasing shrift power and reducing thrust force on the wind turbine blade. It is expected that the behavior of the tip vortex and hub separation vortex plays a major role in aerodynamic and aeroacoustic characteristics.

  • PDF

Experimental Investigation on the Turbulence Augmentation of a Gun-type Gas Burner by Slits and Swirl Vanes

  • Kim, Jang-kweon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1819-1828
    • /
    • 2004
  • The purpose of this paper is to investigate the effects of slits and swirl vanes on the turbulence augmentation in the flow fields of a gun-type gas burner using an X-type hot-wire probe. The gun-type gas burner adopted in this study is composed of eight slits and swirl vanes located on the surface of an inclined baffle plate. Experiment was carried out at a flow rate of 450 ι/min in burner model installed in the test section of subsonic wind tunnel. Swirl vanes playa role diffusing main flow more remarkably toward the radial direction than axial one, but slits show a reverse feature. Consequently, both slits and swirl vanes remarkably increase turbulence intensity in the whole range of a gun-type gas burner with a cone-type baffle plate.

Development of Ventilator without Power using Air Flow (공기흐름을 이용한 무동력 환풍장치 개발)

  • Kim, Bum-Suk;Kwon, Taek-Joo;Jeong, Ji-Hyun
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.26-31
    • /
    • 2016
  • The studies on the efficient ventilator to reduce fire and save energy have been proceeded actively. The purpose of this paper is to design a ventilator used in residential wood stove. The ventilator consists of rotation and support part, and it is operated by natural wind without power. The shape of rotation part of the ventilator is like airfoil to reinforce pressure drop. We designed direction controller for the rotation part to track the direction of wind continuously. The rotation and support part have point-contact each other to minimize a friction. We verify the properties of the proposed ventilator though simulation and experiment. The results show the proposed ventilator can exhaust safely combustion gas of the stove more than other ventilator.

Optimal Conditions of Aerosol Flow Generation for High-density and Uniform Fog Screen (고밀도 균일 안개스크린을 위한 에어로졸 유동의 최적 생성조건)

  • Shin, Dongsoo;Song, Wooseok;Kim, Jinwon;Kim, Woojin;Koo, Jaye
    • Journal of ILASS-Korea
    • /
    • v.22 no.1
    • /
    • pp.13-21
    • /
    • 2017
  • The fog screen is a device projecting the media to the aerosol flow field. As major parameters to generate dense and steady fog screen, shear stress, optical blockage ratio and SMD were obtained result through experiment. The micro droplet was generated by the piezo oscillation element, and the aerosol flow mixed with an air flow was sprayed into the vertical direction from the top of the fog screen through the 280 mm slot. For produce a dense, uniform fog screen, the shear effect, optical blockage ratio and SMD between aerosol and air curtain were measured. The minimum and maximum shear stress conditions were selected and it was confirmed that the optical transmission deviation of the aerosol flow field was small when the aerosol and air curtain flow rates were changed. When the aerosol and air curtain flow power were 18 V (1.51 m/s) and 24 V (2.55 m/s), respectively, under the condition of the minimum shear stress and laminar flow, the optical blockage ratios with the spray length were small, and it produced a most stable and high density uniform fog screen by injecting a constant of $10{\mu}m$ or less.

A Hybrid Approach of Efficient Facial Feature Detection and Tracking for Real-time Face Direction Estimation (실시간 얼굴 방향성 추정을 위한 효율적인 얼굴 특성 검출과 추적의 결합방법)

  • Kim, Woonggi;Chun, Junchul
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.117-124
    • /
    • 2013
  • In this paper, we present a new method which efficiently estimates a face direction from a sequences of input video images in real time fashion. For this work, the proposed method performs detecting the facial region and major facial features such as both eyes, nose and mouth by using the Haar-like feature, which is relatively not sensitive against light variation, from the detected facial area. Then, it becomes able to track the feature points from every frame using optical flow in real time fashion, and determine the direction of the face based on the feature points tracked. Further, in order to prevent the erroneously recognizing the false positions of the facial features when if the coordinates of the features are lost during the tracking by using optical flow, the proposed method determines the validity of locations of the facial features using the template matching of detected facial features in real time. Depending on the correlation rate of re-considering the detection of the features by the template matching, the face direction estimation process is divided into detecting the facial features again or tracking features while determining the direction of the face. The template matching initially saves the location information of 4 facial features such as the left and right eye, the end of nose and mouse in facial feature detection phase and reevaluated these information when the similarity measure between the stored information and the traced facial information by optical flow is exceed a certain level of threshold by detecting the new facial features from the input image. The proposed approach automatically combines the phase of detecting facial features and the phase of tracking features reciprocally and enables to estimate face pose stably in a real-time fashion. From the experiment, we can prove that the proposed method efficiently estimates face direction.

Effects of the Velocity Waveform of the Physiological Flow on the Hemodynamics in the Bifurcated Tube

  • Roh, Hyung-Woon;Kim, Jae-Soo;Suh, Sang-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.296-309
    • /
    • 2003
  • The periodicity of the physiological flow has been the major interest of analytic research in this field up to now Among the mechanical forces stimulating the biochemical reaction of endothelial cells on the wall, the wall shear stresses show the strongest effect to the biochemical product. The objective of present study is to find the effects of velocity waveform on the wall shear stresses and pressure distribution along the artery and to present some correlation of the velocity waveform with the clinical observations. In order to investigate the complex flow phenomena in the bifurcated tube, constitutive equations, which are suitable to describe the rheological properties of the non-Newtonian fluids, are determined, and pulsatile momemtum equations are solved by the finite volume prediction. The results show that pressure and wall shear stresses are related to the velocity waveform of the physiological flow and the blood viscosity. And the variational tendency of the wall shear stresses along the flow direction is very similar to the applied sinusoidal and physiological velocity waveforms, but the stress values are quite different depending on the local region. Under the sinusoidal velocity waveform, a Newtonian fluid and blood show big differences in velocity. pressure, and wall shear stress as a function of time, but the differences under the physiological velocity waveform are negligibly small.

Evaluation of the Groundwater Flow in Fractured Rock Masses (열극암반에서의 지하수 유동 특성 분석)

  • Kim, Gye-Nam;Kim, Jae-Han;An, Jong-Seong
    • Water for future
    • /
    • v.23 no.2
    • /
    • pp.227-237
    • /
    • 1990
  • For a detailed understanding of groundwater flow in rock mass, the effect of major fractures, topography and coefficent of permeability has been evaluated. The numerical model of GFFP-WT was used for the purpose. The results indicate that in the granite porphyry layer with a small permeability, the direction of flow path changes due to convergence of equipotential lines, while the travel time changes due to the presence of fractured in rock masses.

  • PDF

Experimental Study on Ground Subsidence and Underground Cavity Expansion under Various Conditions (다양한 조건에 따른 지반함몰과 지중공동 확장에 대한 실험적 연구)

  • Jeong, SeongYun;Karoui, Tarek;Jeong, YeongHoon;Kim, DongSoo
    • The Journal of Engineering Geology
    • /
    • v.27 no.2
    • /
    • pp.143-152
    • /
    • 2017
  • Recently frequent occurrence of ground subsidence cases has become social issue, and people's concern on this problem has been growing accordingly. Meanwhile, understanding on the mechanism of ground subsidence formation is not enough. Therefore, this study aims for evaluating formation mechanism of ground subsidence under various groundwater conditions through model test when groundwater and soil are leaked together. Major factors found through model tests are direction of groundwater flow, head difference around the leakage point, and strehgth of the ground to support the underground cavity. Firstly, direction of groundwater flow has an influence on the direction of cavity expansion and ground collapse. Secondly, it is observed that the speed of ground subsidence formation increases as the head difference increases. Lastly, the expansion of the cavity can eventually lead to a sudden collapse.