• Title/Summary/Keyword: Major Element

Search Result 1,575, Processing Time 0.029 seconds

Crush FE Analysis of Front Side Assembly of Passenger Cars for Identifying the Roles of Major Parts Influencing on Collapse Mode with Reverse Engineering (승용차 프론트 사이드 조립체 부품의 역할과 붕괴모드에 관한 역설계적 유한요소 충돌해석)

  • Kim, Yong-Woo;Kim, Jeong-Ho;Jeong, Kyung-Shin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.33-40
    • /
    • 2007
  • Crashworthiness design is of special interest in automotive industry and in the transportation safety field to ensure the vehicle structural integrity and more importantly the occupant safety in the event of the crash. Front side assembly is one of the most important energy absorbing components in relating to the crashworthiness design of vehicle. The structure and shape of the front side assemblies are different depending on auto-makers and size of vehicles. Thus, it is not easy to grab an insight on designer's intention when you glance at a new front side member without experiences. In this paper, we have performed the explicit nonlinear dynamic finite element analysis on the front side assembly of passenger cars to identify the mechanical roles of major parts in relation to collapse modes from the viewpoint of reverse engineering. To do this, we have performed crash FE analysis for the two different assemblies of small car and heavy passenger car and have compared dynamic behaviors of the two.

Parametric study on eccentrically-loaded partially encased composite columns under major axis bending

  • Begum, Mahbuba;Driver, Robert G.;Elwi, Alaa E.
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1299-1319
    • /
    • 2015
  • This paper presents a detailed parametric study, conducted using finite element tools to cover a range of several geometric and material parameters, on the behaviour of thin-walled partially encased composite (PEC) columns. The PEC columns studied herein are composed of thin-walled built-up H-shaped steel sections with concrete infill cast between the flanges. Transverse links are provided between the opposing flanges to improve resistance to local buckling. The parametric study is confined to eccentrically-loaded columns subjected to major axis bending only. The parameters that were varied include the overall column slenderness ratio (L/d), load eccentricity ratio (e/d), link spacing-to-depth ratio (s/d), flange plate slenderness ratio (b/t) and concrete compressive strength ($f_{cu}$). The overall column slenderness ratio was chosen to be the primary variable with values of 5, 10 and 15. Other parameters were varied within each case of L/d ratio. The effects of the selected parameters on the behaviour of PEC columns were studied with respect to the failure mode, peak axial load, axial load versus average axial strain response, axial load versus lateral displacement response, moment versus lateral displacement behaviour and the axial load-moment interaction diagram. The results of the parametric study are presented in the paper and the influences of each of the parameters investigated are discussed.

FATIGUE LIFE ASSESSMENT OF REACTOR COOLANT SYSTEM COMPONENTS BY USING TRANSFER FUNCTIONS OF INTEGRATED FE MODEL

  • Choi, Shin-Beom;Chang, Yoon-Suk;Choi, Jae-Boong;Kim, Young-Jin;Jhung, Myung-Jo;Choi, Young-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.590-599
    • /
    • 2010
  • Recently, efficient operation and practical management of power plants have become important issues in the nuclear industry. In particular, typical aging parameters such as stress and cumulative usage factor should be determined accurately for continued operation of a nuclear power plant beyond design life. However, most of the major components have been designed via conservative codes based on a 2-D concept, which do not take into account exact boundary conditions and asymmetric geometries. The present paper aims to suggest an effective fatigue evaluation methodology that uses a prototype of the integrated model and its transfer functions. The validity of the integrated 3-D Finite Element (FE) model was proven by comparing the analysis results of individual FE models. Also, mechanical and thermal transfer functions, known as Green's functions, were developed for the integrated model with the standard step input. Finally, the stresses estimated from the transfer functions were compared with those obtained from detailed 3-D FE analyses results at critical locations of the major components. The usefulness of the proposed fatigue evaluation methodology can be maximized by combining it with an on-line monitoring system, and this combination, will enhance the continued operations of old nuclear power plants.

An Analysis on the Change of Spatial Structures in the Korean Villages of China - The Case of Jang-je Village in Yongjoung City (중국 조선족 촌락의 공간구조 변화 분석 - 용정시 장재촌을 대상으로 -)

  • 김인학;장태현
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.1
    • /
    • pp.54-65
    • /
    • 2003
  • The results of the research were as follows: The entire space of the village was based on natural formation in its initial formation stage. The traditional location conditions and environment were equipped with the possibility and conditions for the development of the village. Spatial boundaries were mostly divided by natural topography. The quantify of lots diminished in spatial structural factors, while the division of roads by hierarchy in terms of size became explicit. Alleys, as the minimum hierarchial nit, were degraded. The residence unit was focused on economic efficiency. Communal use facilities showed an external relations trend as central facilities. The land, unit residence and communal facilities approached the high hierarchial roads. The communal facilities showed relatively higher independence compared to the residence units. The spatial structural changes followed traditional life style in the initial stage of village formation; however, social elements mainly impacted on the changes. Since reform opening, economic elements were major causes of changes, while construction conditions, life style, and awareness of structures impacted upon the changes. Thus, the economic element is the major change element in the Korean Villages, even though other elements will also become diverse.

A Study on the Use of Halophytes on the Reclaimed Land in Landscape Architecture (간척지 염생식물의 조경적 활용방안에 관한 연구)

    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.26 no.3
    • /
    • pp.278-287
    • /
    • 1998
  • The halophytes are considered less important in our field, as the land reclamation executed continuously by public or individual. So this research is to use plants more active on the reclaimed land and to verify their utility in the aspect of the landscape planning, design and complementaton. This research is performed at the construction site of Incheon International Airport in Youngjong-do located in West-sea of Korea. Following proposals are the major conclusions drawn from the research:1. The halophytes to be used in the vicinity of the water reservoir in orer to improve the ground for the introduction of new plants and prevent the water contaminatioin. 2. The halophytes to be used as a gound-cover which protects major structures nearby from being damaged by the salt content in the air. 3. Thd halophytes to be used as a unique and panoramic landscape element. They have various colors which change throughout a year. 4. Thd halophytes to be considered as a outdoor recreation resource. The halophytes planted area may be utilized as picnic area, outdoor event plaza, ball game ground, rough in the golf cource and etc. Additional usage of the land include the future rearch site for sea fronted ecological studies and pasture for cows and other livestock.

  • PDF

Study on Load Reduction of a Tidal Steam Turbine Using a Flapped Blade (플랩 블레이드를 이용한 조류 터빈의 부하 저감에 대한 연구)

  • Jeong, Dasom;Ko, Jin Hwan
    • Ocean and Polar Research
    • /
    • v.42 no.4
    • /
    • pp.293-301
    • /
    • 2020
  • Blades of tidal stream turbines have to sustain many different loads during operation in the underwater environment, so securing their structural safety is a key issue. In this study, we focused on periodic loads due to wave orbital motion and propose a load reduction method with a blade design. The flap of an airplane wing is a well-known structure designed to increase lift, and it can also change the load distribution on the wing through deflection. For this reason, we adopted a passive flap structure for the load reduction and investigated its effectiveness by an analytical method based on the blade element moment theory. Flap torsional stiffness required for the design of the passive flap can be obtained by calculating the flap moment based on the analytic method. Comparison between a flapped and a fixed blade showed the effect of the flap on load reduction in a high amplitude wave condition.

Prediction of Gear Bending Fatigue Life of Electro-mechanical Actuator for Aircraft Through Finite Element Analysis

  • Kim, Taehyung;Seok, Taehyeon;Kwon, Soon-hyeong;Lee, Byung-ho;Kwon, Byung-gi;Kwon, Jun-yong;Cheong, Seong-kyun
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.58-67
    • /
    • 2020
  • In this study, finite element fatigue analysis combined with a fatigue correlation factor is proposed to predict the bending fatigue life of a gear in an electro-mechanical aircraft actuator. First, stress-life curves are obtained for the gear material via a round bar fatigue test. Subsequently, stochastic stress-life (P-S-N) curves are derived for 50% and 1% failure probabilities, separately. The curves are applied to the fatigue analysis model of a single gear tooth, and the effect of the fatigue correction factor is analyzed. The analytical P-S-N curves reflecting the fatigue correction factor matched the experimental data. This shows that the analytical fatigue life is reliable and that the analysis technique is effective.

Dynamic Explicit Elastic-Plastic Finite Element Analysis of Large Auto-body Panel Stamping Process (대형 차체판넬 스템핑공정에서의 동적 외연적 탄소성 유한요소해석)

  • 정동원;김귀식;양동열
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.10-22
    • /
    • 1998
  • In the present work the elastic-plastic FE formulations using dynamic explicit time integration schemes are used for numerical analysis of a large auto-body panel stamping processes. For analyses of more complex cases with larger and more refined meshes, the explicit method is more time effective than implicit method, and has no convergency problem and has the robust nature of contact and friction algorithms while implicit method is widely used because of excellent accuracy and reliability. The elastic-plastic scheme is more reliable and rigorous while the rigid-plastic scheme require small computation time. In finite element simulation of auto-body panel stamping processes, the roobustness and stability of computation are important requirements since the computation time and convergency become major points of consideration besides the solution accuracy due to the complexity of geometry conditions. The performnce of the dynamic explicit algorithms are investigated by comparing the simulation results of formaing of complicate shaped autobody parts, such as a fuel tank and a rear hinge, with the experimental results. It has been shown that the proposed dynamic explicit elastic-plastic finite element method enables an effective computation for complicated auto-body panel stamping processes.

  • PDF

Finite Element Analysis of Auto-body Panel Stamping (리어 힌지 패널 스템핑의 유한요소해석)

  • 정동원;이장희;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.06a
    • /
    • pp.97-109
    • /
    • 1996
  • In the present work computations are carried out for analysis of complicated sheet metal forming process such as forming of a rear hinge. Finite element formulation using dynamic explicit time integration scheme and step-wise combined Implicit/Explicit scheme are introduced for numerical analysis of sheet metal forming process. The rigid-plastic finite element method based on membrane elements has long been employed as a useful numerical technique for the analysis of sheet metal forming because of its time effectiveness. The explicit scheme in general use is based on the elastic-plastic modelling of material requiring large computation time. In finite element simulation of sheet metal forming processes, the robustness and stability of computation are important requirements since the computation time and convergency become major points of consideration besides the solution accuracy due to the complexity of geometry and boundary conditions. The implicit scheme employs a more reliable and rigorous scheme in considering the equilibrium at each step of deformation, while in the explicit scheme the problem of convergency is eliminated at the cost of solution accuracy. The explicit approach and the implicit approach have merits and demerits, respectively. In order to combine the merits of these two methods a step-wise combined implicit/explicit scheme has been developed.

Development of a Finite Element Model for Frontal Crash Analysis of a Large-Sized Truck (대형트럭의 정면 충돌 특성해석을 위한 유한요소모델의 개발)

  • Kim, Hak-Duck;Song, Ju-Hyun;Oh, Chae-Youn
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.489-494
    • /
    • 2001
  • This paper develops a finite element model for frontal crash analysis of a large-sized truck. It is composed of 220 parts, 70,041 nodes and 69,073 elements. This paper explains only major parts' models in detail such as frame, cab, floor, and bumper which affect on crash analysis a lot. In order to prevent penetration not only at a part itself but also between parts, all contact areas are defined using type-36, self-impact type. The developed model's reliability is validated by comparing simulation and crash test results. The results used for model validation are vehicle pulses at B-pillar, and frame and deformation of frame and cab. The frontal crash simulation is performed with the same conditions as crash test. And, it is performed using PAM-CRASH installed in super-computer SP2. The developed model whose reliability is verified may be used as a base to develop a finite element model for occupant behavior and injury coefficient analysis.

  • PDF