• 제목/요약/키워드: Major Element

검색결과 1,575건 처리시간 0.025초

패션 소매 경영과정을 위한 교과과정 연구 - 한국과 미국 대학교를 중심으로 - (Study of Fashion Retail Management Curriculum - 4-year Colleges in Korea and the USA -)

  • 정현주
    • 패션비즈니스
    • /
    • 제13권1호
    • /
    • pp.34-50
    • /
    • 2009
  • The purpose of this study was to compare the curricula majored in fashion retail related area at 4-year colleges in Korea and the USA. Courses were divided into 15 elements including basics, design, production, textile, marketing, industry, merchandise planning, promotion, consumer behaviour, management, business, organization, internship and etc.. The research findings were as follows: 1. Most of 'industry' related majors in Korea consisted of fashion manufacture-oriented curricula elements including design, pattern making, tailoring, draping and textile sciences. 2. Fashion Marketing major stressed on a merchandising element and a marketing one, and the Fashion major focused on the promotion element and the merchandising element as well. However, the retail element was less focused than other elements in the Korean colleges. 3. Fashion Retail related majors in the USA College were likely to focus on the practical fashion retail management elements including retail, marketing, management, business, organization behavior and internship specialized by the major. The different curricula between two countries were clearly existed in terms of the major name and the construction of the course element. The results made in the research would be applied with some modification or adjustments in the fashion retail oriented curricula in order to produce the competitive retail human resource in Korea.

추가령 열곡대에 분포하는 전곡현무암의 지화학적 특성 (Geochemical Characteristics of the Quaternary Jungok Basalt in Choogaryong Rift Valley, Mid-Korean Peninsula)

  • 위수민
    • 자원환경지질
    • /
    • 제29권2호
    • /
    • pp.171-182
    • /
    • 1996
  • 제 4기 전곡현무암은 추가령 열곡대내의 한탄강유로를 따라 길게 분포하고 있으며 이대성 외 (1983)에 의하면 대략 10-20 m정도의 두께를 가지고 있다. 전곡현무암의 암석분화 과정을 밝히기 위해 57개의 시료가 채취 되었으며, 이중 16개의 시료에 대한 주성분 및 미량원소의 화학분석이 실시되었다. 분석된 시료들의 화학조성에 의하면 전곡현무암은 알칼리계열의 현무암으로 특징지워지며, MgO를 제외한 주성분원소의 변화범위가 미량원소에 비하여 상당히 좁은 영역을 나타낸다. 분별결정작용 모델을 정량적으로 시험하기 위해서 Multiple linear regression을 사용하였다. 주성분원소와 반정으로 산출되는 광물의 화학조성을 사용하여 계산된 결과는 전곡현무암의 화학조성의 변화는 감람석, 사장석, 휘석, 자철석이 56 : 25 : 17 : 2의 비율로 분별정출되어 분화된 것으로 설명할 수 있다. 그러나 위의 결과를 가지고 미량원소의 함량을 계산하면 불호정 (incompatible) 원소의 계산치는 딸암석의 실제 함량에 미치지 못한다. 이러한 점으로 미루어 전곡현무암의 화학조성의 변화는 광물들의 단순한 분별정출 작용만으로는 설명하기가 어렵다. 따라서 전곡현무암의 화학조성의 변화는 약간 다른 정도의 부분용융에 의해 불호정 원소의 초기치가 다른 것들이 분별정출과정을 겪었거나, 혹은 RTF과정에 의한 불호정원소의 부화가능성을 배제할 수 없음을 시사한다.

  • PDF

Optimum stiffness values for impact element models to determine pounding forces between adjacent buildings

  • Jaradat, Yazan;Far, Harry
    • Structural Engineering and Mechanics
    • /
    • 제77권2호
    • /
    • pp.293-304
    • /
    • 2021
  • Structural failure due to seismic pounding between two adjacent buildings is one of the major concerns in the context of structural damage. Pounding between adjacent structures is a commonly observed phenomenon during major earthquakes. When modelling the structural response, stiffness of impact spring elements is considered to be one of the most important parameters when the impact force during collision of adjacent buildings is calculated. Determining valid and realistic stiffness values is essential in numerical simulations of pounding forces between adjacent buildings in order to achieve reasonable results. Several impact model stiffness values have been presented by various researchers to simulate pounding forces between adjacent structures. These values were mathematically calculated or estimated. In this study, a linear spring impact element model is used to simulate the pounding forces between two adjacent structures. An experimental model reported in literature was adopted to investigate the effect of different impact element stiffness k on the force intensity and number of impacts simulated by Finite Element (FE) analysis. Several numerical analyses have been conducted using SAP2000 and the collected results were used for further mathematical evaluations. The results of this study concluded the major factors that may actualise the stiffness value for impact element models. The number of impacts and the maximum impact force were found to be the core concept for finding the optimal range of stiffness values. For the experimental model investigated, the range of optimal stiffness values has also been presented and discussed.

Kano의 이원적 품질모형과 Timko의 만족계수를 활용한 공학교육의 질 향상 방안 탐색 (An Improvement Method of Engineering Education Quality using Kano's Dualistic Quality Model and Timko's Satisfaction Coefficient)

  • 허영주;예철해
    • 공학교육연구
    • /
    • 제21권3호
    • /
    • pp.31-37
    • /
    • 2018
  • The purpose of this study is to develop a method to improve the quality of engineering education by using Kano's dualistic quality model and Timko's customer satisfaction coefficient. The results of the study are as follows. Firstly, the top priority for major education is improve 'smooth support of class medium' as an attractive and one-dimensional quality element, and 'use of various examples' and 'specialty improvement of major curriculum' as an one-dimensional quality element. Secondly, the top priority for general education is improve 'liberal education curriculum' as an attractive quality element 'use of various examples' as an one-dimensional quality element. Thirdly, the top priority for extra-curriculum is develop and provide 'study support program of student' and 'voluntary service'. Fourthly, the top priority for administrative service and facilities is improve 'increase of scholarship' and expand 'service of welfare facilities as dormitory and refectory' as an one-dimensional quality element.

불연속암반내 시공되는 터널의 유한요소모델링 (Finite Element Modeling of Tunnels Constructed in Discontinuous Rock Mass)

  • 유충식;김종석;이호;이광명
    • 한국지반공학회논문집
    • /
    • 제15권4호
    • /
    • pp.221-234
    • /
    • 1999
  • 본 논문에서는 불연속암반내 시공되는 터널의 유한요소해석에 있어서 절리요소를 이용한 불연속면의 모델링에 관한 내용을 다루었다. 불연속 암반터널의 모델링이 가능한 유한요소해석 프로그램의 개발을 위해 기존의 유한요소해석 프로그램 GEOFE2D에 불연속면의 모델링이 가능한 절점변위 절리요소를 적용하고 모형실험 및 기존의 상용프로그램과의 비교를 통해 그 타당성을 검증하였다. 또한 검증된 GEOFE2D를 이용하여 불연속면이 터널의 거동에 미치는 영향을 고찰하기 위해 불연속면이 터널을 관통하는 경우에 대한 해석을 수행하고, 그 과정에서 불연속면과 숏크리트 라이닝 교차부에서의 변위 적합조건을 만족시킬 수 있는 불연속면 모델링 기법을 제시하였다. 한편, 해석결과를 분석한 결과 불연속면은 터널 주변의 응력-변형률 상태에 현저한 영향을 미치며, 특히 불연속면이 관통하는 부위에서의 숏크리트 라이닝 축력 및 휨 모멘트가 현저히 증가하는 것으로 나타났다. 따라서, 불연속면을 포함하는 터널의 거동해석시에는 불연속면에 대한 보다 상세한 모델링이 수반되어야 실제 거동에 보다 근접하는 해석결과를 도출시킬 수 있을 것으로 판단된다.

  • PDF

Ultimate lateral capacity of two dimensional plane strain rectangular pile in clay

  • Keawsawasvong, Suraparb;Ukritchon, Boonchai
    • Geomechanics and Engineering
    • /
    • 제11권2호
    • /
    • pp.235-252
    • /
    • 2016
  • This paper presents a new numerical solution of the ultimate lateral capacity of rectangular piles in clay. The two-dimensional plane strain finite element was employed to determine the limit load of this problem. A rectangular pile is subjected to purely lateral loading along either its major or minor axes. Complete parametric studies were performed for two dimensionless variables including: (1) the aspect ratios of rectangular piles were studied in the full range from plates to square piles loaded along either their major or minor axes; and (2) the adhesion factors between the soil-pile interface were studied in the complete range from smooth surfaces to rough surfaces. It was found that the dimensionless load factor of rectangular piles showed a highly non-linear function with the aspect ratio of piles and a slightly non-linear function with the adhesion factor at the soil-pile interface. In addition, the dimensionless load factor of rectangular piles loaded along the major axis was significantly higher than that loaded along the minor axis until it converged to the same value at square piles. The solutions of finite element analyses were verified with the finite element limit analysis for selected cases. The empirical equation of the dimensionless load factor of rectangular piles was also proposed based on the data of finite element analysis. Because of the plane strain condition of the top view section, results can be only applied to the full-flow failure mechanism around the pile for the prediction of limiting pressure at the deeper length of a very long pile with full tension interface that does not allow any separation at soil-pile interfaces.

Constructing a digital twin for estimating the response and load of a piping system subjected to seismic and arbitrary loads

  • Dongchang Kim;Gungyu Kim;Shinyong Kwag;Seunghyun Eem
    • Smart Structures and Systems
    • /
    • 제31권3호
    • /
    • pp.275-281
    • /
    • 2023
  • In recent years, technological developments have rapidly increased the number of complex structures and equipment in the industrial. Accordingly, the prognostics and health monitoring (PHM) technology has become significant. The safety assessment of industrial sites requires data obtained by installing a number of sensors in the structure. Therefore, digital twin technology, which forms the core of the Fourth Industrial Revolution, is attracting attention in the safety field. The research on digital twin technology of structures subjected to seismic loads has been conducted recently. Hence, this study proposes a digital twin system that estimates the responses and arbitrary load in real time by utilizing the minimum sensor to a pipe that receives a seismic and arbitrary load. To construct the digital twin system, a finite-element model was created considering the dynamic characteristics of the pipe system, and then updating the finite-element model. In addition, the calculation speed was improved using a finite-element model that applied the reduced-order modeling (ROM) technology to achieve real-time performance. The constructed digital twin system successfully and rapidly estimated the load and the point where the sensor was not attached. The accuracy of the constructed digital twin system was verified by comparing the response of the digital twin model with that derived by using the load estimated from the digital twin model as input in the finite-element model.

유한요소법을 이용한 인공고관절 주대형태의 개선에 대한 연구 (A Study for Improvement of the Femoral Stem Type using the Finite Element Analysis)

  • 윤경렬;원예연;이수훈
    • 한국CDE학회논문집
    • /
    • 제5권2호
    • /
    • pp.122-126
    • /
    • 2000
  • A major mechanical problem with total hip replacement is the loosening of the femoral component. The loss of proximal support, with firm fixation distally, has been thought to be a major caused of fatigue failure of femoral stems. While many causes have been proposed, the most frequently suggested cause of the calcar resorption is the disuse atrophy of the cortex of the calcar due to the stress shielding of the proximal bone by the metal femoral stem. In this research, the new-designed stem(modified collar stem) was considered which made a hole inside stem and had a 3 mm thickness. Using the 3-dimensional finite element methods, the common collar stem and the modified colla stem was modeled and analysed. Also, the two models was compared. The results showed that the modified collar stem decreased the stress-shielding and it made a effective load transfer at the entire femoral region.

  • PDF

강릉-동해에 분포하는 해안단구 퇴적물의 지화학적 풍화 특성 (Geochemical weathering properties of marine terrace sediment at Gangneung-Donghae area, South Korea)

  • 홍성찬;최정헌;김종연
    • 한국지형학회지
    • /
    • 제23권2호
    • /
    • pp.95-108
    • /
    • 2016
  • Several flights of marine terraces were developed along the Eastern coast of Korea (Gangneung-Donghae). Various dating techniques have been applied to determine the age of these terraces, with a view to better understand the regional uplift history. In this study, we compare the major element compositions of the terrace deposits and modern beach sediments to estimate the relative formation age of these terraces. We observed a discernible difference in major element geochemistry between modern beach sediments and various elevated terrace deposit (i.e. palaeobeach sediments). In general, weathering properties of marine terrace sediments are expected to be affected by the formation ages of terraces, and here, we confirm that the chemical composition are indicative of the relative age of the terraces in this region.

원전 주요기기의 3차원 피로수명 평가 (3-Dimensional Fatigue Life Evaluation for Major Components of Nuclear Power Plant)

  • 안민용;배성렬;박영재;장윤석;최재붕;김영진;정명조;최영환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.102-107
    • /
    • 2004
  • In general, major components of nuclear power plant have been evaluated based on 2-dimensional design codes conservatively. However, more exact assessment is necessary for continued operation beyond the design life. In this paper, 3-dimensional stress and fatigue analyses reflecting full geometry and monitored operating condition of reactor pressure vessel have been carried out. The analyses results showed that conservatism of current 2-dimensional evaluation based on design transient. Therefore, it is anticipated that the schemes developed from this research such as 3-dimensional finite element modeling, stress analysis and fatigue analysis related techniques can be utilized as fundamental tools for exact lifetime evaluation and license renewal of major nuclear components.

  • PDF