• 제목/요약/키워드: Maintenance scenario

검색결과 113건 처리시간 0.027초

딥러닝을 활용한 일반국도 아스팔트포장의 공용수명 예측 (Prediction of Asphalt Pavement Service Life using Deep Learning)

  • 최승현;도명식
    • 한국도로학회논문집
    • /
    • 제20권2호
    • /
    • pp.57-65
    • /
    • 2018
  • PURPOSES : The study aims to predict the service life of national highway asphalt pavements through deep learning methods by using maintenance history data of the National Highway Pavement Management System. METHODS : For the configuration of a deep learning network, this study used Tensorflow 1.5, an open source program which has excellent usability among deep learning frameworks. For the analysis, nine variables of cumulative annual average daily traffic, cumulative equivalent single axle loads, maintenance layer, surface, base, subbase, anti-frost layer, structural number of pavement, and region were selected as input data, while service life was chosen to construct the input layer and output layers as output data. Additionally, for scenario analysis, in this study, a model was formed with four different numbers of 1, 2, 4, and 8 hidden layers and a simulation analysis was performed according to the applicability of the over fitting resolution algorithm. RESULTS : The results of the analysis have shown that regardless of the number of hidden layers, when an over fitting resolution algorithm, such as dropout, is applied, the prediction capability is improved as the coefficient of determination ($R^2$) of the test data increases. Furthermore, the result of the sensitivity analysis of the applicability of region variables demonstrates that estimating service life requires sufficient consideration of regional characteristics as $R^2$ had a maximum of between 0.73 and 0.84, when regional variables where taken into consideration. CONCLUSIONS : As a result, this study proposes that it is possible to precisely predict the service life of national highway pavement sections with the consideration of traffic, pavement thickness, and regional factors and concludes that the use of the prediction of service life is fundamental data in decision making within pavement management systems.

비행체 자동점검장비의 유지보수성 향상 방안 (Maintainability Improvement of Automatic Test Equipment for Aircraft)

  • 서민기;권기용;김성우;이성우
    • 한국항행학회논문지
    • /
    • 제21권5호
    • /
    • pp.508-513
    • /
    • 2017
  • 공학 용어로 유지보수성(maintainability)은 제품의 유지/관리에 대한 용이성을 의미한다. 비행체 자동점검장비(ATE)는 점검대상장비(UUT)의 기능/성능 특성에 따라 점검절차가 개발되기 때문에 UUT의 설계 변경에 많은 영향을 받는다. 더욱이 통합 ATE가 다수의 UUT를 점검하는 환경이라면 UUT 설계 변경에 대한 ATE의 유지보수가 쉽지 않다. 개발자는 ATE의 유지보수성 향상을 위하여 쉽고 명확한 개발 방식을 선정하여 개발 담당자의 변경에 유연하게 대처할 수 있어야 한다. 또한 UUT 설계 변경에 영향을 받는 영역을 특정 범위로 제한하여 수정될 부분을 최소화할 수 있어야 한다. 본 논문에서는 비행체 ATE 개발 과정을 기반으로 유지보수성 향상에 초점을 둔 ATE 개발 방안을 제안한다.

머신러닝을 이용한 선제적 VNF Live Migration (Proactive Virtual Network Function Live Migration using Machine Learning)

  • 정세연;유재형;홍원기
    • KNOM Review
    • /
    • 제24권1호
    • /
    • pp.1-12
    • /
    • 2021
  • VM (Virtual Machine) live migration은 VM에서 동작하는 서비스의 downtime을 최소화하면서 해당 VM을 다른 서버 노드로 이전시키는 서버 가상화 기술이다. 클라우드 데이터센터에서는 로드밸런싱, 특정 위치 서버로의 consolidation 통한 전력 소비 감소, 서버 유지보수(maintenance) 작업 중에도 사용자에게 무중단 서비스를 제공하기 위한 목적 등으로 VM live migration 기술이 활발히 사용되고 있다. 또한 고장 및 장애 상황이 예측되거나 그 징후가 탐지되는 경우, 예방 및 완화 수단으로 활용될 수 있다. 본 논문에서 우리는 두 가지 선제적(proactive) VNF live migration 방법을 제안하며, 첫 번째 방법은 서버 로드밸런싱에 VNF live migration 기법을 사용하며 두 번째 방법은 고장 예측에 기반하여 고장 회피 목적으로 VNF live migration을 사용한다. 선제적 migration을 위한 예측에 머신러닝(기계학습)을 활용하며 실험을 통해 그 실효성을 검증한다. 특히 두 번째 방법에 대해 vEPC (Virtual Evolved Packet Core)의 고장 상황을 case study한 결과를 제시한다.

Radiological safety analysis of a newly designed spent resin mixture treatment facility during normal and abnormal operational scenarios for the safety of radiation workers

  • Jaehoon Byun;Seungbin Yoon;Hee Reyoung Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1935-1945
    • /
    • 2023
  • The radiological safety of workers in a newly developed microwave-based spent resin treatment facility was assessed based on work location and operational scenarios. The results show that the remote-operation room worker was exposed to maximum annual dose of 3.19E+00 mSv, which is 15.9% of the dose limit, thereby confirming radiological safety. Inside the pathway, annual doses in the range of 7.87E-02-2.07E-01 mSv were measured initially at the mock-up tank and later at the point between the spent resin separation and treatment parts. The dose of emergency maintenance workers was below the dose limit (4.08E-03-4.99E+00 mSv); however, before treatment (separation and microwave), the dose of maintenance and repair workers exceeded the dose limit. The doses of the effluent removal workers at the zeolite and activated carbon storage tank and spent resin storage tank were the lowest at 2.79E-01-2.87E-01 mSv and 9.27E-01 mSv in "1 h" and "4-5 h of operation", respectively. The immediately lower and upper layers of the facility room exhibited the highest annual doses of 1.84E+00 and 3.22E+00 mSv, respectively. Through this study, a scenario that can minimize the dose considering the movement of spent resin through the facility can be developed.

Vehicle-bridge coupling vibration analysis based fatigue reliability prediction of prestressed concrete highway bridges

  • Zhu, Jinsong;Chen, Cheng;Han, Qinghua
    • Structural Engineering and Mechanics
    • /
    • 제49권2호
    • /
    • pp.203-223
    • /
    • 2014
  • The extensive use of prestressed reinforced concrete (PSC) highway bridges in marine environment drastically increases the sensitivity to both fatigue-and corrosion-induced damage of their critical structural components during their service lives. Within this scenario, an integrated method that is capable of evaluating the fatigue reliability, identifying a condition-based maintenance, and predicting the remaining service life of its critical components is therefore needed. To accomplish this goal, a procedure for fatigue reliability prediction of PSC highway bridges is proposed in the present study. Vehicle-bridge coupling vibration analysis is performed for obtaining the equivalent moment ranges of critical section of bridges under typical fatigue truck models. Three-dimensional nonlinear mathematical models of fatigue trucks are simplified as an eleven-degree-of-freedom system. Road surface roughness is simulated as zero-mean stationary Gaussian random processes using the trigonometric series method. The time-dependent stress-concentration factors of reinforcing bars and prestressing tendons are accounted for more accurate stress ranges determination. The limit state functions are constructed according to the Miner's linear damage rule, the time-dependent S-N curves of prestressing tendons and the site-specific stress cycle prediction. The effectiveness of the methodology framework is demonstrated to a T-type simple supported multi-girder bridge for fatigue reliability evaluation.

비익명성 그룹키를 이용한 안전한 블루투스 피코넷 (A Secure Bluetooth Piconet using Non-Anonymous Group Keys)

  • 서대희;이임영
    • 한국정보과학회논문지:정보통신
    • /
    • 제30권2호
    • /
    • pp.222-232
    • /
    • 2003
  • 무선 정보 환경의 변화에 따라 다양한 정보에 대한 풍족감이 요구되고 이에 따라 많은 근거리 무선 통신 기술들이 개발 연구되어 왔으며, 그 중에서도 최근 근거리 무선 통신의 표준으로 각광받고 있는 Bluetooth는 많은 관심을 받고 있는 실정이다. 그러나 블루투스가 자체 보안 요소는 좀 더 큰 네트워크에 적용하기엔 많은 취약점을 보이고 있다. 따라서 본 논문에서는 블루투스의 일반적인 개요 및 블루투스의 보안에 관해서 알아보고 취약점을 분석한 뒤 이를 바탕으로 안전한 블루투스 조회과정에서의 안전한 연결을 거쳐 ECDSA와 그룹 키를 이용한 블루투스 피코넷의 형성과 유지 과정을 제안함으로써 블루투스가 가지는 자체 보안성의 취약점을 보완한 안전한 블루투스 시나리오를 제시하였다.

Vision-Based Relative State Estimation Using the Unscented Kalman Filter

  • Lee, Dae-Ro;Pernicka, Henry
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권1호
    • /
    • pp.24-36
    • /
    • 2011
  • A new approach for spacecraft absolute attitude estimation based on the unscented Kalman filter (UKF) is extended to relative attitude estimation and navigation. This approach for nonlinear systems has faster convergence than the approach based on the standard extended Kalman filter (EKF) even with inaccurate initial conditions in attitude estimation and navigation problems. The filter formulation employs measurements obtained from a vision sensor to provide multiple line(-) of(-) sight vectors from the spacecraft to another spacecraft. The line-of-sight measurements are coupled with gyro measurements and dynamic models in an UKF to determine relative attitude, position and gyro biases. A vector of generalized Rodrigues parameters is used to represent the local error-quaternion between two spacecraft. A multiplicative quaternion-error approach is derived from the local error-quaternion, which guarantees the maintenance of quaternion unit constraint in the filter. The scenario for bounded relative motion is selected to verify this extended application of the UKF. Simulation results show that the UKF is more robust than the EKF under realistic initial attitude and navigation error conditions.

A Feasibility Study on TETRA System Application for Train Control Systems

  • Tsogtbayar, Chinzorig;Kang, Hyoungseok;Lee, Jongwoo;Boldbaatar, Tsevelsuren
    • International Journal of Railway
    • /
    • 제9권2호
    • /
    • pp.36-40
    • /
    • 2016
  • TETRA communication system is very versatile system which can transmit voice + data and packet data optimized. Direct mode operation permits to connect between mobiles when mobile stain is out of coverage of networks. It can be more secure communication channel for railway signaling systems. Railway signaling systems use many of wayside signal equipment, which require many maintenance efforts and budget. Many railway authorities want to reduce and replace the wayside equipment. Radio based signaling systems are one of candidate for replacing the conventional signaling systems. The radio based signaling systems can replace track circuit and wayside signal. The radio systems permit to connect between control centers and trains. The radio systems have to ensure high quality of the connectivity more or equal to the existed track circuits. We studied the application of TETRA systems for railway radio systems for bridging between train control centers and trains. We provide an operation scenario for radio based train control system to ensure the safety require to the existed trains control system and satisfied the existed operational availability. We showed the data transmission speed, maximum bit error rate, and data coding for the radio-based signal system using TETRA systems.

RBI 절차의 석유화학 플랜트 적용에 관한 연구 (A Study on Implementation of Risk Based Inspection Procedures to a Petrochemical Plant)

  • 송정수;심상훈;김지윤;윤기봉
    • 대한기계학회논문집A
    • /
    • 제27권3호
    • /
    • pp.416-423
    • /
    • 2003
  • During the last ten years, the need has been increased for reducing maintenance cost for aged equipments and ensuring safety, efficiency and profitability of petrochemical and refinery plants. RBI (Risk Based Inspection) methodology is one of the most promising technologies satisfying the need in the field of integrity management. In this study, a user-friendly software, realRBl for RBI based on the API 581 code was developed. This software has modules for evaluating qualitative and semi-quantitative risk level, analyzing quantitative risks using the potential consequences of a failure of the pressure boundary, and assessing the likelihood of failure. A quantitative analysis was performed for 16 columns in a domestic NCC (Naphtha Cracking Center) plant whose operating time reaches about 12 years. Each column was considered as two equipment parts by dividing into top and bottom. Generic column failure frequencies were adjusted based on likelihood data. After determining release rate, release duration and release mass for each failure scenario, flammable/explosive and toxic consequences were assessed. Current risks for 32 equipment parts were evaluated and risk based prioritization were determined as a final result.

BILBO Network: a proposal for communications in aircraft Structural Health Monitoring sensor networks

  • Monje, Pedro M.;Aranguren, Gerardo
    • Structural Monitoring and Maintenance
    • /
    • 제1권3호
    • /
    • pp.293-308
    • /
    • 2014
  • In the aeronautical environment, numerous regulatory and communication protocols exist that cover interconnection of on-board equipment inside the aircraft. Developed and implemented by the airlines since the 1960s, these communication systems are reliable, strong, certified and able to contact different sensors distributed throughout the aircraft. However, the scenario is slightly different in the structural health monitoring (SHM) field as the requirements and specifications that a global SHM communication system must fulfill are distinct. The number of SHM sensors installed in the aircraft rises into the thousands, and it is impossible to maintain all of the SHM sensors in operation simultaneously because the overall power consumption would be of thousands of Watts. This design of a new communication system must consider aspects as management of the electrical power supply, topology of the network for thousands of nodes, sampling frequency for SHM analysis, data rates, selected real-time considerations, and total cable weight. The goal of the research presented in this paper is to describe and present a possible integration scheme for the large number of SHM sensors installed on-board an aircraft with low power consumption. This paper presents a new communications system for SHM sensors known as the Bi-Instruction Link Bi-Operator (BILBO).