• Title/Summary/Keyword: Maintenance and Operation

Search Result 2,112, Processing Time 0.025 seconds

A Study on the Method for Setting the Optimal Maintenance Concept based on RAM-C Using Modeling & Simulation (M&S를 활용한 RAM-C 기반 최적 정비 개념 설정 방안 연구)

  • Kim, Kyungrok;Lee, Kiwon;Jeong, Jun;Cha, Jonghan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.530-538
    • /
    • 2022
  • Recently, the R&D of weapon systems has been strengthened in terms of economic cost management throughout the entire life cycle from performance. This study proposes the method for setting the optimal maintenance concept based on RAM-C in weapon system acquisition stage by calculating the operation & maintenance cost as well as reliability, availability, and maintainability. First, we design a simulation model for analysis of weapon system logistic supportability. In addition, information such as weapon system Part Breakdown Structure, operation & maintenance system, cost, and etc for simulation analysis, is applied. Based on the obtained simulation results, the optimal plan is selected among alternatives designed with various maintenance concepts through normalization and weight setting. It is expected to be of technical help in the application of RAM-C in the weapon system acquisition stage.

Development of Education and Training Programs and Job Analysis on 'Mechanical Facilities Maintenance Manager' Using DACUM (DACUM을 활용한 기계설비유지관리자 직무분석 및 교육훈련 프로그램 개발)

  • Oh, Chun Shik;Cho, Jeong Yoon;Jeong, Yousung;Song, Nakhyun
    • 대한공업교육학회지
    • /
    • v.44 no.2
    • /
    • pp.86-103
    • /
    • 2019
  • The purpose of this study is to provide basic data on the development of education and training programs for training 'mechanical facilities maintenance manager'. To this end, the DACUM technique was used for job analysis and education and training programs were developed through expert consultation meetings. The job analysis was based on the 10-member DACUM Committee to derive the job definition, job model, job description, and task description of the 'mechanical facilities maintenance manager'. The main findings are as follows. First, the 'mechanical facilities maintenance manager' was defined as those who operate, inspect, diagnose, and repair mechanical facilities to provide the best performance and efficient operation management, provide a safe and pleasant environment, and perform energy saving and facility life extension tasks. Second, the duties of the 'mechanical facilities maintenance manager' analyzed in the job model consist of the comprehensive plan for operation of mechanical facilities, energy management of mechanical facilities, operation management of mechanical facilities, maintenance of mechanical facilities, safety environment management of mechanical facilities, and customer support management of mechanical facilities. Considering the nature and content of the duties, 4 to 11 tasks per duty were derived and a total of 33 tasks were presented as job model. Third, the curriculum for the 'mechanical facilities maintenance manager' was set up in two courses: Practice I for Mechanical Facilities Maintenance and Practice II for Mechanical Facilities Maintenance. Considerations and policy suggestions were presented when applying and implementing education and training programs based on the results of the research.

A Study on Effective Information Delivery System in Aviation Maintenance (효율적인 항공정비 정보전달 체계에 관한 연구)

  • Kim, Chun-Yong;Hwang, Hyoe-Jung;Kim, Chil-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.2
    • /
    • pp.46-53
    • /
    • 2010
  • In the aspect of the nature of aircraft maintenance work on divisible tasks carried out by a wide range of operation and expertise, any information transmission problems will not only cause a threat to flight safety but also reduce productivity by keeping the team from fulfilling its mission of delivering aircraft with airworthiness. In this regard, this study firstly identify the current status of information of aircraft maintenance and factors disturbing information transmission. Then, this article also find out the level of information culture of the AMT(Aircraft Maintenance Technicians) and problems in using information. Finally, suggestions on the model of the positive information culture in a field of aircraft maintenance through efficient use of the information including safety will be followed.

Study on a Optimal Inspection Cycle of Electrical facility of Railroad (철도전기설비의 최적점검주기에 관한 기초연구)

  • Chu, Cheol-Min;Kim, Jae-Chul;Lee, Tae-Hee;An, Jae-Min;Moon, Jong-Fil
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.224-228
    • /
    • 2007
  • It is focused on a methodology to establish a optimal inspection cycle of electrical facility of railroad Decision method of optimal inspection cycle is a process which establishes maintenance plan for facilities' immanent function as using reliability theory in operation term In order to ensure normal operation in a given condition, the decision method is logical for selecting effective maintenance plan to consider characteristic of system In estimation of failure rate, critical facility is selected firstly. After that, proper distribution function on each facility is decided to investigate distribution function for extraction of failure rate. Next, cost produced by the case that facility's failure is occurred is surveyed. Finally, maintenance method developed until now is investigated, before suitable model for the facility applying maintenance method is developed, and that maintenance decision is made. Therefore, this process is the method to find optimal inspection cycle for reasonable cost and effective reliability on facility.

  • PDF

Development of Lifetime Assessment and Rehabilitation Cost Calculation Methods for Overseas ROMM Project

  • Hyun, Jung-Seob;Kim, Doo-Young;Hwang, Kwang-Won;Park, Min-Gyu
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.2
    • /
    • pp.119-125
    • /
    • 2017
  • Regarding the implementation of ROMM project (Rehabilitation, Operation, Maintenance & Management), which is one of overseas development projects, it is very important to diagnose the exact current status of aged thermal power plant. However, when people visit the power plant for the purpose of prediagnosis to implement the ROMM project, most target power plants for diagnosis, in general, are under operation. This can be a big interference factor to diagnose the exact current status of power plants. Therefore, in order to solve such interference factor, based on the 30 years of know-how in the field, the present study has developed a regression curve for a simple life time assessment and the calculation of rehabilitation cost that may be used as a reference relatively for the quantitative diagnosis on the status of a relevant power plant even during the operation of the power plant.

Numerical Experiments for the Stress-Reducing Preventive Maintenance Model (수치실험을 통한 스트레스 감소 예방보수모형의 고찰)

  • Park, Jong Hun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.3
    • /
    • pp.41-52
    • /
    • 2020
  • This paper investigates the stress-reducing preventive maintenance model through numerical experiments. The preventive maintenance model is used to analyze the relationship between related conditions and variables to gain insight into the efficient operation of the system when performing preventive maintenance in real-world situations. Various preventive maintenance models have been developed over the past decades and their complexity has increased in recent years. Increasing complexity is essential to reflect reality, but recent models can only be interpreted through numerical experiments. The stress-reducing preventive maintenance is a newly introduced preventive maintenance concept and can only be interpreted numerically due to its complexity, and has received little attention because the concept is unfamiliar. Therefore, for information purposes, this paper investigates the characteristics of the stress-reducing preventive maintenance and the relationship between parameters and variables through numerical experiments. In particular, this paper is focusing on the economic feasibility of stress-reducing preventive maintenance by observing changes in the optimal preventive maintenance period in response to changes in environmental stress and the improvement factor. As a result, when either the environmental stress or the improve effect of stress-reducing preventive maintenance is low, it is not necessary to carry out the stress-reducing preventive maintenance at excessive cost. In addition, it was found that the age reduction model is more economical than the failure rate reduction model.

Structural monitoring of movable bridge mechanical components for maintenance decision-making

  • Gul, Mustafa;Dumlupinar, Taha;Hattori, Hiroshi;Catbas, Necati
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.249-271
    • /
    • 2014
  • This paper presents a unique study of Structural Health Monitoring (SHM) for the maintenance decision making about a real life movable bridge. The mechanical components of movable bridges are maintained on a scheduled basis. However, it is desired to have a condition-based maintenance by taking advantage of SHM. The main objective is to track the operation of a gearbox and a rack-pinion/open gear assembly, which are critical parts of bascule type movable bridges. Maintenance needs that may lead to major damage to these components needs to be identified and diagnosed timely since an early detection of faults may help avoid unexpected bridge closures or costly repairs. The fault prediction of the gearbox and rack-pinion/open gear is carried out using two types of Artificial Neural Networks (ANNs): 1) Multi-Layer Perceptron Neural Networks (MLP-NNs) and 2) Fuzzy Neural Networks (FNNs). Monitoring data is collected during regular opening and closing of the bridge as well as during artificially induced reversible damage conditions. Several statistical parameters are extracted from the time-domain vibration signals as characteristic features to be fed to the ANNs for constructing the MLP-NNs and FNNs independently. The required training and testing sets are obtained by processing the acceleration data for both damaged and undamaged condition of the aforementioned mechanical components. The performances of the developed ANNs are first evaluated using unseen test sets. Second, the selected networks are used for long-term condition evaluation of the rack-pinion/open gear of the movable bridge. It is shown that the vibration monitoring data with selected statistical parameters and particular network architectures give successful results to predict the undamaged and damaged condition of the bridge. It is also observed that the MLP-NNs performed better than the FNNs in the presented case. The successful results indicate that ANNs are promising tools for maintenance monitoring of movable bridge components and it is also shown that the ANN results can be employed in simple approach for day-to-day operation and maintenance of movable bridges.

Developing a Non-Periodic Preventive Maintenance Model Guaranteeing the Minimum Reliability (최소 신뢰도를 보장하는 비 주기적 예방보전 모형 개발)

  • Lee, Juhyun;Ahn, Suneung
    • Journal of Applied Reliability
    • /
    • v.18 no.2
    • /
    • pp.104-113
    • /
    • 2018
  • Purpose: This paper proposes the non-periodic preventive maintenance policy based on the level of cumulative hazard intensity. We aim to construct a cost-effectiveness on the proposed model with relaxing the constraint on reliability. Methods: We use the level of cumulative hazard intensity as a condition variable, instead of reliability. Such a level of cumulative hazard intensity can derive the reliability which decreases as the frequency of preventive maintenance action increases. We also model the imperfect preventive maintenance action using the proportional age setback model. Conclusion: We provide a numerical example to illustrate the proposed model. We also analyze how the parameters of our model affect the optimal preventive maintenance policy. The results show that as long as high reliability is guaranteed, the inefficient preventive maintenance action is performed reducing the system operation time. Moreover, the optimal value of the proposed model is sensitive to changes in preventive maintenance cost and replacement cost.

Development of maintenance concept and procedures for KASS (KASS 유지보수 정의 및 절차 개발)

  • Minhyuk Son;Youngsun Yun;ByungSeok Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.373-379
    • /
    • 2022
  • KASS (korea augmentation satellite system) is an SBAS (satellite based augmentation system) that must ensure the performance of aviation service in accordance with the International Civil Aviation Organization's SARPs (standards and recommended practices) Annex 10 - Aeronautical Telecommunications. In order to guarantee the target service performance, the operating system must be operated, maintained and managed stably, and a maintenance system must be established for this purpose. From the maintenance point of view, the KASS subsystems were developed to consist of replacement units, and the maintenance organization and procedures to manage those subsystems and units were defined. In addition, the maintenance task for each the replacement unit was developed to ensure the availability performance required for the successful KASS operation, and the developed tasks were verified to sufficiently cover the activities to maintain the previously defined replacement units. The maintenance tasks developed through this study will be continuously verified in the actual operation preparation process prior to the full-scale provision of aviation services in the end of 2023, and will be updated accordingly.

A Database Design for Remote Maintenance of Navigation and Communication Equipments in a Vessel (선박 항해통신장비 원격유지보수를 위한 데이터베이스 설계)

  • Kim, Ju-young;Ok, Kyeong-suk;Kim, Ju-won;Cho, Ik-soon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2052-2060
    • /
    • 2017
  • The SOLAS ship should carry at least 83 different types of equipment based on the SFI group codes and each of which consists of several to dozens of components. During ship operation, it is necessary to ensure the normal operation of such equipment, and remote maintenance is highly demanded for immediate repair in the event of a equipment fault. This study proposes to find suitable classification system and to derive database structure for remote maintenance of navigation and communication equipment. As a result of this study, the classification system of equipment should be layered into equipment type, model, and component, and main table in the database consists of FMEA, service history, case data through Q&A, Preventive Maintenance. A database was constructed for 140 navigation and communication equipment models and 750 components. In order to evaluate the practical effects, service engineer evaluated the usefulness using the cloud app.