• Title/Summary/Keyword: Main-Chain LCP

Search Result 5, Processing Time 0.02 seconds

Bending and Pressing Tolerance of Flexible Polyoxetane based Liquid Crystalline Polymer/Low Molecular Weight Liquid Crystal Device

  • Jang, Chi-Woong;Lim, Tong-Kun;Kim, Moo-Jong;Kim, Ku-Nam;Kwon, Young-Wan;Jin, Jung-Il;Bae, Jung-Hun;Kim, Han-Sik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.433-435
    • /
    • 2005
  • We have studied the realigning behavior of liquid crystal molecules in liquid crystalline polymer/liquid crystal(LCP/LC) system when they are exposed to external stimulation such as bending and pressing. The birefringence of the LCP/LC in a flexible display device was measured as a function of bending or pressing deformation. The microscopic dynamic behavior of main chain, side chain, and the LC were characterized by FTIR and polarization optical microscopy. When the device is deformed in scattering memory state, liquid crystal(LC) director is found to align from randomly oriented domain state(scattering state) to homeotropic state.

  • PDF

Synthesis and Properties of Combined Main-Chain/Side-Chain Liquid Crystalline Polymers with Cholesteryl and Azobenzene Groups

  • Gu, Su-Jin;Lee, Eung-Jae;Bang, Moon-Soo
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.14-21
    • /
    • 2019
  • Main-chain/side-chain liquid crystalline polymers (MCSCLCPs) combined with an azobenzene group and a cholesteryl group were synthesized to impart light and temperature sensitivity to the polymer. The polymers were designed with the azobenzene unit as the mesogenic group of the main-chain and various compositions of the azobenzene and cholesteryl units as the mesogenic group of the side-chain. The chemical structures and physical properties of the synthesized polymers were investigated by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, differential scanning calorimetry, thermogravimetric analysis, polarized optical microscopy, and ultraviolet-visible (UV-Vis) spectroscopy. All the MCSCLCPs were amorphous and exhibited enantiotropic liquid crystal phases; these polymers achieved the nematic phase with increasing content of the azobenzene group and exhibited the cholesteric phase with weak liquid crystallinity as the content of the cholesteryl group was increased. Furthermore, the polymers containing the azobenzene group showed photoisomerization when exposed to UV-Vis light, and the CP-A3C7 and CP-A5C5 polymers exhibited thermochromism in the temperature range of the liquid crystal phase.

Electro-Optical Properties of Polyoxetane based Liquid Crystalline Polymer/Low Molecular Weight Liquid Crystal

  • Jang, Chi-Woong;Kwon, Oh-Jeong;Kim, Ku-Nam;Kwon, Young-Wan;Lim, Tong-Kun;Jin, Jung-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.482-483
    • /
    • 2003
  • We have synthesized a new material of polyoxetane based liquid crystalline polymer/liquid crystal (LCP/LC) for flexible memory or dynamic mode device and characterized the electro-optics behavior of this system. The microscopic dynamic behavior of main chain, side chain, and the low molecular weight LC were characterized by X-ray scattering and time resolved FTIR..

  • PDF

Synthesis and Characterization of Polymers with Azobenzene and Hexamethylene Groups in Main Chain (주사슬에 아조벤젠기와 헥사메틸렌기를 갖는 고분자의 합성 및 특성)

  • Gu, Su-Jin;Lee, Eung-Jae;Bang, Moon-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.86-92
    • /
    • 2019
  • Polymers with various compositions of azobenzene and hexamethylene groups in the main chain were synthesized by a Schotten-Baumann reaction and their properties were investigated. The chemical structures and physical properties of the synthesized polymers were investigated by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, differential scanning calorimetry, thermogravimetric analysis, polarized optical microscopy, and x-ray diffraction. The polymers showed an inherent viscosity of 1.28-1.36 dl/g and were relatively insoluble in most organic solvents. The melt transition temperature increased rapidly with increasing number of azobenzene groups in the polymer. When the azobenzene monomer content was more than 50 mol%, no melting transition occurred below the decomposition temperature. Among the polymers with a melt transition temperature, the MP-A3C7 and MP-A5C5 polymers were liquid crystalline materials and exhibited a nematic phase with weak liquid crystallinity over a wide liquid crystal temperature range. This difference in the properties of the synthesized polymers is likely due to the changes in intermolecular forces resulting from the linearity and polarity of the trans-form of azobenzene.

Properties of Liquid Crystalline Polyester/Poly(ethylene 2,6-naphthalate) Blend Fibers (액정 폴리에스테르/PEN 블렌드 섬유의 성질)

  • Kim, Won;Kim, Young-Yong;Son, Jung-Sun;Yun, Doo-Soo;Han, Chul;Choi, Jae-Kon;Jo, Byung-Wook
    • Elastomers and Composites
    • /
    • v.37 no.4
    • /
    • pp.244-257
    • /
    • 2002
  • A thermotropic liquid crystalline polymer(TLCP) which has flexible butylene/hexylene spacers in the main chain and a triad aromatic ester type mesogenic unit containing a naphthyl group was prepared by solution polycondensation. The in-situ composites based on poly(ethylene 2,6-naphthalate) (PEN) and a thermotropic liquid crystalline polymer(TLCP) were prepared and melt spun at different TLCP contents and different draw ratios to produce monofilaments. Blends of the TLCP with PEN were investigated in terms of thermal, mechanical properties and morphology. The TLCP synthesized showed nematic mesophasic behavior and its transition temperature to isotropic melt from mesophase was 249℃. The blends showed well dispersed TLCP phases in the PEN matrix without macroscopic phase separation. Inclusion of TLCP in the blends decreased the cold crystallization temperature of PEN in the blend, therefore, the TLCP acts as a nucleating agent in the blend and showed good interfacial adhesion between the dispersed LCP phases and PEN matrix with domain sizes 40~50 nm in diameter and well developed fibrillation in the monofilaments. The TLCP acted effectively as a reinforcing material in the PEN matrix at the 10wt% level, it led to an increase of initial modulus up to 270% and tensile strength by 235%, while the elongation rate increasing with higher draw ratios.