• 제목/요약/키워드: Main shaft

검색결과 277건 처리시간 0.024초

초대형 콘테이너선의 축계정렬 계산 사례 소개 (The Introduction of Shaft Alignment Calculation for very Large Container Vessel)

  • 강동춘;박건우;김경호
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2005년도 특별논문집
    • /
    • pp.138-143
    • /
    • 2005
  • Recently, it is much more required to approach the accurate shaft alignment analysis according to the tendency of active showing in large container vessel and that of the heavy weight of propeller in connection with it. Shaft alignment calculation lies upon how the pressure apply on bearings properly in operation of main engine and how the stress of shaft puts within that of limit of bearing material and how the movement of shaft is prospected owing to propeller forces and moments. Therefore, we have conducted the shaft alignment calculation of very large container vessel considering the deformation of hull structure and the propeller forces and moments and the static and dynamic condition of shaft. The calculation results show the pressure distribution of aft bush and the movement of shaft in bearing. The shaft alignment calculation helps the stable application of shaft alignment, which was proved in sea trial.

  • PDF

회전기계의 전자기 축전류에 대한 이론 및 실험 (Theory and Experiment for Electromagnetic Shaft Current in Rotation Machinery)

  • 김재실
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.40-45
    • /
    • 1999
  • Electrical damages to critical parts in rotation machinery have caused may machinery failures and hours of costly downtime. The problem of shaft currents generated in non-electrical machines have puzzled both users and manufacturers of these machines. The main solution for preventing electro- magnetic type damage is to demagnetize all of the machinery parts, however this is costly and time consuming. Therefore a thorough investigation into the causes and physical characteristics of electro- magnetic shaft currents is needed. In this paper, the self excitation theory was developed for a simple model, and axial flux Faraday disk machine surrounded by a long solenoid. Experimental tests were conducted to investigate the physical characteristics on an electromagnetic self excitation rig. The theory showed that the directions of both the shaft rotation and the coil turns should e identical if self excitation is to occur. From the tests, the electromagnetic type shaft current had both AC and DC components occurred at all vibration frequencies. This could point to the way to detect small instabilities or natural frequency locations by monitoring shaft currents.

  • PDF

Theory and Experiment for Electromagnetic Shaft Current in Rotating Machinery

  • Kim, Chaesil;Park, Jong-Kweon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권1호
    • /
    • pp.20-25
    • /
    • 2002
  • Electrical damages to critical parts in rotating machinery have caused many machinery failures and hours of costly downtime. The problem of shaft currents generated in non-electrical machines has puzzled both users and manufacturers of these machines. The main solution for preventing electromagnetic type damage is to demagnetize all of the machinery parts, however this is costly and time consuming. Therefore a thorough investigation into the causes and physical characteristics of electromagnetic shaft currents is needed. In this paper, the self excitation theory was developed far a simple model, an axial flux Faraday disk machine surrounded by a long solenoid. Experimental tests were conducted to investigate the physical characteristics on an electromagnetic self excitation rig. The theory showed that the directions of both the shaft rotation and the coil turns should be identical if self excitation is to occur. From the tests, the electromagnetic type shaft current had both AC and DC components occurred at all vibration frequencies. This could point to a way to detect small instabilities or natural frequency locations by monitoring shaft currents.

정수장용 교반기 시설의 과진동 원인 분석 (Investigation on the Excessive Vibration of A Mixer Facility in A Water Purification Plant)

  • 박진호;이정한;김봉수;강문후;김동수;주윤식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.312-316
    • /
    • 2002
  • Recently, mixers are being widely used in the water purification plant in order to increase the filtration efficiency. It has been found that a severe vibration was being felt on a upper structure of a mixer facility during steady state operation. The cause of the excessive vibration of the structure to which the mixer's shaft is supported has been evaluated through modal analysis on the shaft and vibration measurements during operation. The fundamental natural frequency of the mixer's shaft is found to be around 1.8 Hz and the main vibratory frequency around 30 Hz. It has been tuned out that the main vibratory frequency, 30 Hz is coincident with the fundamental holding frequency of the upper structure, and that the acceleration signal of the upper structure and the displacement signal of the mixer's shaft showed highly coherent to each other. Accordingly, it reveals that the main cause of the excessive vibration is due not to the mixer's vibration but to the natural frequency of the upper structure excited by flow turbulence.

  • PDF

카메라를 이용한 축계 비틀림 계측 장치 개발 (A Study of the Shaft Power Measuring System Using Cameras)

  • 정정순;김영복;최명수
    • 한국해양공학회지
    • /
    • 제24권4호
    • /
    • pp.72-77
    • /
    • 2010
  • This paper presents a method for measuring the shaft power of a marine main engine. Usually, in traditional systems for measuring shaft power, a strain gauge is used even though it has several disadvantages. First, it is difficult to set up the strain gauge on the shaft and acquire the correct signal for analysis. Second, it is very expensive and complicated. For these reasons, we investigated alternative approaches for measuring shaft power and proposed a new method that uses a vision-based measurement system. For this study, templates for image processing and CCD cameras were installed at the both ends of the shaft. Then, in order for the cameras to capture the images synchronously, we used a trigger mark and a optical sensor. The position of each template between the first and the second camera images were compared to calculate the torsion angle. The proposed measurement system can be installed more easily than traditional measurement systems and is suitable for any shaft because it does not contact the shaft. With this approach, it is possible to measure the shaft power while a ship is operating.

레이디얼 볼베어링의 내륜 끼워맞춤에 관한 유한요소해석 (Finite Element Analysis on the Shaft Fitting to Inner Raceway of Radial Ball Bearing)

  • 고병두;이하성
    • Design & Manufacturing
    • /
    • 제6권1호
    • /
    • pp.45-51
    • /
    • 2012
  • The main goal of this paper is to establish an interference tolerance for determining optimal amount of clearance in the shaft-bearing system supported by radial ball bearings. The 2-D frictional contact model was employed for the FE analysis between the shaft and the inner raceway. Several examples were simulated using different material properties for the solid shaft. Efforts were focused on the deformation applied in the radial direction to select suitable bearings. The analysis results showed that the initial axial preload applied on the bearings plays a significant role to reduce bearing fatigue life. The proposed design parameters obtained by numerical simulations can approximately predict a rate of bearing life reduction as a function of shaft diameter ratio. This analysis can also be used to calculate the optimal initial radial clearance in order to obtain a shaft-bearing system design for high accuracy and long life.

  • PDF

메인 베어링 강성이 풍력발전기용 3점 지지 드라이브 트레인의 기어박스에 미치는 영향 (The Influence of Main Bearing Stiffness on the Gearbox of 3 Point Suspension Wind Turbine Drive Train)

  • 남주석;남용윤
    • 한국생산제조학회지
    • /
    • 제24권3호
    • /
    • pp.278-286
    • /
    • 2015
  • The effects of the main bearing stiffness combined with vertical non-torque force on the input load and shaft deflection of a gearbox were investigated for the three-point suspension drive train of a wind turbine. A finite element analysis model for the drive train was studied experimentally, and its applicability to the present study was verified. The results show that, as the main bearing stiffness is increased, the input load of the gearbox decreases, whereas the input shaft deflection increases. The stiffness component for the pitch moment has the largest influence on the gearbox input load. Although the gearbox life increases at a higher main bearing stiffness, the economic efficiency and durability of the entire drive train system should also be considered in the selection of the main bearing stiffness.

선박의 직진과 선회 시의 프로펠러 하중이 프로펠러 축 베어링에 미치는 영향 (Effects of Propeller Forces on the Propeller Shaft Bearing during Going Straight and Turning of Ship)

  • 신상훈
    • 대한조선학회논문집
    • /
    • 제52권1호
    • /
    • pp.61-69
    • /
    • 2015
  • In the beginning of the 1990's, numerous shaft bearing damages, especially in aft stern tube bearing, were reported. The main reasons of bearing damages were estimated that hull deflections have been increased by more flexible hulls and propeller dynamic loads have not been considered in shaft alignment. After that time, studies to take into account hull deflections in shaft alignment have been actively carried out, but for the latter leave much to be desired. In this study, the effects of the propeller forces on the propeller shaft bearing have been investigated by estimating thrust eccentricity as reasonable as possible although some assumptions to simulate turning of ship were introduced. Three dimensional nominal wake to estimate thrust eccentricity have been calculated by using CFD analysis and model test in the towing tank. This study presents the procedure to estimate the propeller eccentric forces and their influence on the stern tube bearing for a container carrier. As a result, it has been found that the lateral propeller forces in turning condition should be considered in shaft alignment to prevent shaft bearing damages.

국내 중저심도(20~80m) 수직구에 적합한 Stage-Cut 공법 개발 (Development of Stage-Cut Method for medium depth Shaft in Korea)

  • 홍창수;이지수;황대진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1522-1529
    • /
    • 2009
  • When a shaft is excavated in Korea, the mechanized method such as RBM(Raise Boring Machine) or RC(Raise Climber) is used independently of depth. But usually, the mechanized method is useful for the deep depth. On the contrary, when the depth of shaft is short, the cost of excavation increase. So in the case of shaft constructon less than 100m, we need to consider more suitable method of shaft construction such as Stage-cut which is one of blasting methods. Stage-Cut is widely used in the field of shaft construction in Japan as a tool of rock excavation. The main purpose of this study is to provide technical guidance for design and construction of shafts in rock, using Stage-cut method which is suitable for 20m~80m depth shaft. In this study, Blasting tests was performed in field, according to rock classification. Finally, the stage-cut method which is suitable for the geology of Korea was developed.

  • PDF

Simulink를 이용한 터그보트의 샤프트제너레이터 물리모델링 및 연료소모율 검증 시뮬레이션에 관한 연구 (A Study on the Physical Modeling of the Shaft Generator and the Fuel Consumption Verification Simulation of a Tugboat using Simulink)

  • 김성동;김남호
    • 융합신호처리학회논문지
    • /
    • 제22권1호
    • /
    • pp.7-13
    • /
    • 2021
  • 최근 해운산업에서는 환경규제에 대한 중요성이 높아지고 있으며, 이를 위한 산업의 요구가 급격히 높아지고 있다. 이에 샤프트제너레이터는 선박에 가장 빠르게 적용이 가능한 환경규제 대응기술로 선주의 요구가 증가하고 있다. 샤프트제너레이터는 메인추진엔진에 전동기를 설치하여, 부하환경에 따라 가변적으로 사용함으로 메인추진엔진의 연료소모율을 줄일 수 있는 장치이다. 저속에서는 모터의 힘으로 동작하고, 급격한 부하가 필요할 때에는 메인추진엔진과 모터가 함께 동작함으로 효율적인 운전이 가능하다. 본 논문에서는 MATLAB Simulink를 이용하여 터그보트의 디젤엔진과 샤프트제너레이터를 모델링하고, 시뮬레이션을 통해서 연료소모율을 검증하였다.