• Title/Summary/Keyword: Main protease

Search Result 43, Processing Time 0.047 seconds

Softening of Jumbo Squid Dosidicus gigas via Enzyme Injection

  • Eom, Sung-Hwan;Lee, Sang-Hoon;Chun, Yong-Gi;Park, Chan-Eun;Park, Dong-June
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.2
    • /
    • pp.229-233
    • /
    • 2015
  • We developed a new softening technology applicable to the main body of the jumbo squid Dosidicus gigas; this will aid in squid consumption by elderly individuals and those who have masticatory and dysphagia problems. Protease solutions were injected into jumbo squid and hardness was measured using a texture analyzer. Seven enzymes were tested. Jumbo squid became progressively softer during bromelain and collupulin treatment; the hardness attained $5.6{\times}10^3N/m^2$ at bromelain concentrations of 1.00% (w/v) and $6.7{\times}10^3N/m^2$ at collupullin concentrations of 1.00% (w/v). The extents of tissue softening after bromelain and collupulin injection to 0.1%, 0.25%, 0.50%, and 1.00% (all w/v) were evaluated; the squid retained its shape after steaming for 10 min at $100^{\circ}C$ to inactivate the enzymes. Thus, the results of this research indicate that enzyme injection softens the texture of jumbo squid.

IgG antibody responses in early experimental sparganosis and IgG subclass responses in human sparganosis

  • Chung, Young-Bae;Kong, Yoon;Yang, Hyun-Jong;Cho, Seung-Yull
    • Parasites, Hosts and Diseases
    • /
    • v.38 no.3
    • /
    • pp.145-150
    • /
    • 2000
  • Antigenic components in the crude extracts of Spirometra mansoni plerocercoid were analyzed in early experimental infections and in IgG subclass observed in clinical sparganosis. By IgG immunoblot, sera obtained serially from experimental mice, fed 5 spargana each, were reacted with the crude extracts. Protein bands at 36-26 kDa and 103 kDa showed positive reactions since two weeks after infection. In a differential immunoblot, in which a monospecific antibody against sparganum chymase at 36 kDa was pre-treated, the reactions at 36-26 kDa disappeared, indicating that the sparganum chymase and its degradation products invoked IgG antibody reactions. When 69 patients sera of human sparganosis were examined for their IgG subclass responses, IgG4 levels showed the highest reaction which was followed by IgG 1 The IgG4 antibody also reacted mainly with 36-31 kDa protease. These results indicate that 36 kDa chymase of 5. nansoni plerocercoid is the main antigenic component inducing Ige antibody response in early stage of experimental sparganosis and for specific IgG subclass reactions in human sparganosis.

  • PDF

Fermentation Properties of Irradiated Kochujang (방사선 조사 고추장의 발효 특성)

  • Kim, Moon-Sook;Oh, Jin-A;Kim, In-Won;Shin, Dong-Hwa;Han, Min-Su
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.934-940
    • /
    • 1998
  • Kochujang, fermented hot pepper soybean paste, was prepared by traditional method, and irradiated with gamma ray of $^{60}Co{\;}up{\;}to{\;}15{\pm}1.5{\;}kGy$ for confirming main factor of kochujang fermentation. Nonirradiated (control) and irradiated samples kochujang were fermented at $25^{\circ}C$ and analyzed biochemical properties including enzyme activities and viable cell count during fermentation for 60 days. The total viable count in irradiated kochujang decreased to $10^4{\;}CFU/g$ which was $10^8{\;}CFU/g$ in the control. Because of a little changing enzyme activities of ${\alpha}{\cdot}{\beta}{\;}amylase$ and acid neutral protease by irradiation at the above level, amino type nitrogen which is the main quality reference of kochujang was comparable to the control. By irradiation, gas production was completely stopped which is one of biggest problems during distribution of kochujang. Total volume of gas produced at $25^{\circ}C$ from the control kochujang was 453 mL/100 g which was composed of over 90% of $CO_2$. The odor of irradiated kochujang was inferior to the control which seemed to be related to reduced microbial populations.

  • PDF

Biochemical Characteristics of Whole Soybean Cereals Fermented with Aspergillus Strains. (Aspergillus속 균류들을 이용한 콩알메주 발효의 생화학적 특성)

  • Kim, Dong-Ho;Kim, Seung-Ho;Choi, Nak-Sik;Bae, Seok;Jeon, Soon-Bae
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.6
    • /
    • pp.551-557
    • /
    • 1998
  • Whole soybean cereal was fermented with four Aspergillus strains in pilot meju fermentation system. The pH range of the product was 7.40~7.98, the contents of reducing sugar and amino-nitrogen were 0.04~2.78%, 178~309 mg%, respectively and that of free fatty acid ranged 2.67~5.05%. The components of the amino acid, organic acid, free sugars and fatty acid showed distinctive patterns among four groups of fermented soybean cereals. Amylase activity and carbohydrate degradation rate of A. usami was higher than other strains. But protease and protein degradation rate, lipase and lipid degradation rate were similar in four strains. The odor concentrates of soybean cereals fermented with Aspergillus strains were different from Bacillus strains. Especially, pyrazine components, the main and common flavor chemicals in Bacillus strains, were not determined in this study and Aspergillus specific components were 9-methyl-acridine, dl-limonene and 2,3-butanediol. Soybean paste, made from A. oryzae fermented soybean cereal, showed excellent sensory evaluation.

  • PDF

Functional quality characteristics of extracts by sugar-leaching and lactic acid fermentation of mulberry leaves (Morus alba L.) (뽕잎의 당침 및 유산발효에 의한 추출물의 기능성 품질 특성)

  • Ryu, Il-Hwan;Kwon, Tae-Oh
    • Journal of Sericultural and Entomological Science
    • /
    • v.51 no.2
    • /
    • pp.164-172
    • /
    • 2013
  • This study was carried out to investigate functional quality characteristics of extract obtained after sugar-leaching for 12 weeks (SLE) and extract obtained after lactic acid fermentation for 8 weeks (LFE) of mulberry leaves. The yield, sugar content, pH, and total acidity of SLE were 27%, 43 $^{\circ}Brix$, 4.6, and 0.45%. The yield, sugar content, pH, and total acidity of LFE were 166%, 33 $^{\circ}Brix$, 3.6, and 1.17% respectively. The lactic acid bacteria viable numbers ($1.2{\times}10^{10}$ CFU/ml) of LFE were more than those of SLE ($2.8{\times}10^2$ CFU/ml). The LFE expressed activities of hydrolytic enzymes (amylase, cellulase, pectinase, protease), but SLE did not express. The contents of acetic acid, citric acid, and malic acid of SLE were higher than those of LFE, but lactic acid content of LFE was higher than that of SLE. The main free sugars of SLE were glucose (200.93 mg/g), fructose (236.32 mg/g), and sucrose (18.41 mg/g), but LFE did not detect all free sugars. The contents of polyphenol, anthocyanin, and piperidine alkaloid of LFE were higher than those of SLE. ${\alpha}$-Glycosidase activities were inhibited 3.4% and 16.2% by SLE and LFE. These results suggest that lactic acid fermentation extraction is an effective method to increase the yield and contents of functional quality of mulberry leaves extract.

Characteristics of Volatile Flavor Compounds in Kochujang Prepared with Commercial Enzyme During Fermentation (효소제를 사용한 개량식고추장의 숙성과정 중 휘발성 향기성분의 특성)

  • Choi, Jin-Young;Lee, Taik-Soo
    • Applied Biological Chemistry
    • /
    • v.46 no.3
    • /
    • pp.207-213
    • /
    • 2003
  • Kochujang was prepared for this study with raw material inoculated by commercial enzyme of amylase and protease. Volati1e compounds of Kochujang were analyzed using a purge and trap method during fermentation and identified with GC-MSD. Total 54 kinds of volatile flavor components like 16 kinds of alcohol, 16 kinds of ester, 7 kinds of acid, 4 kinds of aldehyde, 2 kinds of alkane, 1 kind of benzene, 3 kinds of ketone, 1 kind of alkene, 2 kind of amine, 1 kind of phenol, other 1 were found. Total number of volatile flavor detected right after manufacturing were 23 kinds like 3 kinds of alcohol, 6 kinds of ester, 3 kinds of aldehyde. After 30 days storage, total number of volatile flavor went up to 31 kinds with addition of 4 kinds of alcohol, 1 kind of ester. The total number of volatile flavor after 120 days storage were increased to 49 kinds. Volatile flavor compounds detected during the storage period were total 20 kinds like 6 kinds of alcohol such as 2-methyl-1-propanol, ethanol, 3-methyl-1-butanol, 5 kinds of ester such as ethyl acetate, isoamyl acetate, ethyl butyrate, 3 kinds of aldehyde such as butanal, acetaldehyde and 6 kinds of others. Even though peak area % of flavor compound varied depends on fermentation period, ethanol, ethyl acetate, ethyl butyrate, ethenone, 2-methyl-1-propanol, 3-methyl-1-butanol were the main compounds that consisted of flavor from Kochujang which was made with enzyme treatment. Ethly acetate showed the highest result in the treatment of right after manufacturing, 3-methyl-1-butanol had up to 90th day and ether were the other days.

A Study of the Diversity and Profile for Extracellular Enzyme Production of Aerobically Cultured Bacteria in the Gut of Muraenesox cinereus (갯장어(Muraenesox cinereus) 장으로부터 호기적 조건에서 분리된 미생물의 다양성 및 세포외 효소 생산능 분석에 관한 연구)

  • Lee, Yong-Jik;Oh, Do-Kyoung;Kim, Hye Won;Nam, Gae-Won;Sohn, Jae Hak;Lee, Han-Seung;Shin, Kee-Sun;Lee, Sang-Jae
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.248-255
    • /
    • 2019
  • This research confirmed the diversity and characterization of gut microorganisms isolated from the intestinal organs of Muraenesox cinereus, collected on the Samcheonpo Coast and Seocheon Coast in South Korea. To isolate strains, Marine agar medium was basically used and cultivated at $37^{\circ}C$ and pH7 for several days aerobically. After single colony isolation, totally 49 pure single-colonies were isolated and phylogenetic analysis was carried out based on the result of 16S rRNA gene DNA sequencing, indicating that isolated strains were divided into 3 phyla, 13 families, 15 genera, 34 species and 49 strains. Proteobacteria phylum, the main phyletic group, comprised 83.7% with 8 families, 8 genera and 26 species of Aeromonadaceae, Pseudoalteromonadaceae, Shewanellaceae, Enterobacteriaceae, Morganellaceae, Moraxellaceae, Pseudomonadaceae, and Vibrionaceae. To confirm whether isolated strain can produce industrially useful enzyme or not, amylase, lipase, and protease enzyme assays were performed individually, showing that 39 strains possessed at least one enzyme activity. Especially the Aeromonas sp. strains showed all enzyme activity tested. This result indicated that isolated strains have shown the possibility of the industrial application. Therefore, this study has contributed for securing domestic genetic resources and the expansion of scientific knowledge of the gut microbial community in Muraenesox cinereus of South Korea.

Microbiological and Enzymological Studies on Takju Brewing (탁주(濁酒) 양조(釀造)에 관(關)한 미생물학적(微生物學的) 및 효소학적(酵素學的) 연구(硏究))

  • Kim, Chan-Jo
    • Applied Biological Chemistry
    • /
    • v.10
    • /
    • pp.69-100
    • /
    • 1968
  • 1. In order to investigate on the microflora and enzyme activity of mold wheat 'Nuruk' , the major source of microorganisms for the brewing of Takju (a Korean Sake), two samples of Nuruk, one prepared at the College of Agriculture, Chung Nam University (S) and the other perchased at a market (T), were taken for the study. The molds, aerobic bacteria, lactic acid bacteria, and yeasts were examined and counted. The yeasts were classified by the treatment with TTC (2, 3, 5 triphenyltetrazolium chloride) agar that yields a varied shade of color. The amylase and protease activities of Nuruk were measured. The results were as the followings. a) In the Nuruk S found were: Aspergillus oryzae group, $204{\times}10^5$; Black Aspergilli, $163{\times}10^5$; Rhizogus, $20{\times}10^5$; Penicillia, $134{\times}10^5$; Areobic bacteria, $9{\times}10^6-2{\times}10^7$; Lactic acid bacteria, $3{\times}10^4$ In the Nuruk T found were: Aspergillus oryzae group, $836{\times}10^5$; Black Aspergilli, $286{\times}10^5$; Rhizopus, $623{\times}10^5$; Penicillia, $264{\times}10^5$; Aerobic bacteria, $5{\times}10^6-9{\times}10^6$; Lactic acid bacteria, $3{\times}10^4$ b) Eighty to ninety percent of the aerobic bacteria in Nuruk S appeared to belong to Bacillus subtilis while about 70% of those in Nuruk T seemed to be spherical bacteria. In both Nuruks about 80% of lactic acid bacteria were observed as spherical ones. c) The population of yeasts in 1g. of Nuruk S was about $6{\times}10^5$, 56.5% of which were TTC pink yeasts, 16% of which were TTC red pink yeasts, 8% of which were TTC red yeasts, 19.5% of which were TTC white yeasts. In Nuruk T(1g) the number of yeasts accounted for $14{\times}10^4$ and constituted of 42% TTC pink. 21% TTC red pink 28% TTC red and 9% TTC white. d) The enzyme activity of 1g Nuruk S was: Liquefying type Amylase, $D^{40}/_{30},=256$ W.V. Saccharifying type Amylase, 43.32 A.U. Acid protease, 181 C.F.U. Alkaline protease, 240C.F.U. The enzyme activity of 1g Nuruk T was: Liquefying type Amylase $D^{40}/_{30},=32$ W.V. Saccharifying type amylase $^{30}34.92$ A.U. Acid protease, 138 C.F.U. Alkaline protease 31 C.F.U. 2. During the fermentation of 'Takju' employing the Nuruks S and T the microflora and enzyme activity throughout the brewing were observed in 12 hour intervals. TTC pink and red yeasts considered to be the major yeasts were isolated and cultured. The strains ($1{\times}10^6/ml$) were added to the mashes S and T in which pH was adjusted to 4.2 and the change of microflora was examined during the fermentation. The results were: a) The molds disappeared from each sample plot since 2 to 3 days after mashing while the population of aerobic bacteria was found to be $10{\times}10^7-35{\times}10^7/ml$ inS plots and $8.2{\times}10^7-12{\times}10^7$ in plots. Among them the coccus propagated substantially until some 30 hours elasped in the S and T plots treated with lactic acid but decreased abruptly thereafter. In the plots of SP. SR. TP. and TR the coccus had not appeared from the beginning while the bacillus showed up and down changes in number and diminished by 1/5-1/10 the original at the end stage. b) The lactic acid bacteria observed in the S plot were about $7.4{\times}10^7$ in number per ml of the mash in 24 hours and increased up to around $2{\times}10^8$ until 3-4 days since. After this period the population decreased rapidly and reached about $4{\times}10^5$ at the end, In the plot T the lactic acid becteria found were about $3{\times}10^8$ at the period of 24 fours, about $3{\times}10$ in 3 days and about $2{\times}10^5$ at the end in number. In the plots SP. SR. TP, and TR the lactic acid bacteria observed were as less as $4{\times}10^5$ at the stage of 24 hours and after this period the organisms either remained unchanged in population or ceased to exist. c) The maiority of lactic acid bacteria found in each mash were spherical and the change in number displayed a tendency in accordance with the amount of lactic acid and alcohol produced in the mash. d) The yeasts had showed a marked propagation since the period of 24 hours when the number was about $2{\times}10^8$ ㎖ mash in the plot S. $4{\times}10^8$ in 48 hours and $5-7{\times}10^8$ in the end period were observed. In the plot T the number was $4{\times}10^8$ in 24 hours and thereafter changed up and down maintaining $2-5{\times}10^8$ in the range. e) Over 90% of the yeasts found in the mashes of S and T plots were TTC pink type while both TTC red pink and TTC red types held range of $2{\times}10-3{\times}10^7$ throughout the entire fermentation. f) The population of TTC pink yeasts in the plot SP was as $5{\times}10^8$ much as that is, twice of that of S plot at the period of 24 hours. The predominance in number continued until the middle and later stages but the order of number became about the same at the end. g) Total number of the yeasts observed in the plot SR showed little difference from that of the plot SP. The TTC red yeasts added appeared considerably in the early stage but days after the change in number was about the same as that of the plot S. In the plot TR the population of TTC red yeasts was predominant over the T plot in the early stage which there was no difference between two plots there after. For this reason even in the plot w hers TTC red yeasts were added TTC pink yeasts were predominant. TTC red yeasts observed in the present experiment showed continuing growth until the later stage but the rate was low. h) In the plot TP TTC pink yeasts were found to be about $5{\times}10^8$ in number at the period of 2 days and inclined to decrease thereafter. Compared with the plot T the number of TTC pink yeasts in the plot TP was predominant until the middle stage but became at the later stage. i) The productivity of alcohol in the mash was measured. The plot where TTC pink yeasts were added showed somewhat better yield in the earely stage but at and after the middle stage the difference between the yeast-added and the intact mashes was not recognizable. And the production of alcohol was not proportional to the total number of yeasts present. j) Activity of the liquefying amylase was the highest until 12 hours after mashing, somewhat lowered once after that, and again increased around 36-48 hours after mashing. Then the activity had decreased continuously. Activity of saccharifying amylase also decreased at the period of 24 hours and then increased until 48 hours when it reached the maximum. Since, the activity had gradually decreased until 72 hours and rapidly so did thereafter. k) Activity of alkaline protease during the fermentation of mash showed a tendency to decrease continusously although somewhat irregular. Activity of acid protease increased until hours at the maximum, then decreased rapidly, and again increased, the vigor of acid protease showed better shape than that of alkaline protease throughout. 3. TTC pink yeasts that were predominant in number, two strains of TTC red pink yeasts that appeared throughout the brewing, and TTC red yeasts were identified and the physiological characters examined. The results were as described below. a) TTC pinkyeasts (B-50P) and two strains of TTC red pink yeasts (B-54 RP & B-60 RP) w ere identified as the type of Saccharomyces cerevisiae and TTC pink red yeasts CB-53 R) were as the type of Hansenula subpelliculosa. b) The fermentability of four strains above mentioned were measured as follows. Two strains of TTC red pink yeasts were the highest, TTC pink yeasts were the lowest in the fermantability. The former three strains were active in the early stage of fermentation and found to be suitable for manufacturing 'Takju' TTC red yeasts were found to play an important role in Takju brewing due to its strong ability to produce esters although its fermentability was low. c) The tolerance against nitrous acid of strains of yeast was marked. That against lactic acid was only 3% in Koji extract, and TTC red yeasts showed somewhat stronger resistance. The tolerance against alcohol of TTC pink and red pink yeasts in the Hayduck solution was 7% while that in the malt extract was 13%. However, that of TTC red yeasts was much weaker than others. Liguefying activity of gelatin by those four strains of yeast was not recognized even in 40 days. 4. Fermentability during Takju brewing was shown in the first two days as much as 70-80% of total fermentation and around 90% of fermentation proceeded in 3-4 days. The main fermentation appeared to be completed during :his period. Productivity of alcohol during Takju brewing was found to be apporximately 65% of the total amount of starch put in mashing. 5. The reason that Saccharomyces coreanuss found be Saito in the mash of Takju was not detected in the present experiment is considered due to the facts that Aspergillus oryzae has been inoculated in the mold wheat (Nuruk) since around 1930 and also that Koji has been used in Takju brewing, consequently causing they complete change in microflora in the Takju brewing. This consideration will be supported by the fact that the original flavor and taste have now been remarkably changed.

  • PDF

Microbiological and Enzymological Studies on the Flavor Components of Sea Food Pickles (젓갈등속(等屬)의 정미성분(呈味成分)에 관(關)한 미생물학적(微生物學的) 및 효소학적(酵素學的) 연구(硏究))

  • Lee, Ke-Ho
    • Applied Biological Chemistry
    • /
    • v.11
    • /
    • pp.1-27
    • /
    • 1969
  • More than thirty kinds of sea food pickles have been eaten in Korea. Out of these salted yellow tail pickle, salted clam pickle, salted oyster pickle, and salted cuttlefish pickle were employed for the analysis of their components, identification of main fermenting microbes, and determination of enzyme characteristics concerned. Also studied was the effect of enzymic action of microbes, which are concerned with the fermenting of pickles, on the production of flavorous 5'-mononucleotides and amino acids. The results are summarized as follows: 1. Microflora observed in the pickles are: (a) Total count of viable cells after 1-2 months of pickling was found to be $10^7$ and that after 6 months decreased to $10^4$. (b) Microbial occurence in the early stage of pickling was observed to be 10-20% Micrococcus spp., 10-20% Brevibacterium spp., 0-30% Sarcina spp., 20-30% Leuconostoc spp., ca 30% Bacillus spp., 0-10% Pseudomonas spp., 0-10% Flavobacterium spp., and 0-20% yeast. (c) Following the early stage of pickling, mainly halophilic bacteria such as Bacillus subtilis, Leuconostoc mesenteroides, Pediococcus halophilus and Sarcina litoralis, were found to exhibit an effect on the fermentation of pickle and their enzyme activities were in direct concern in fermentation of pickles. (d) Among the bacteria participating in the fermentation, Sarcina litoralis 8-14 and 8-16 strains were in need of high nutritional requirement and the former was grown only in the presence of purine, pyrimidine and cystine and the latter purine, pyrimidine and glutamic acid. 2. Enzyme characteristics studied in relation to the raw materials and the concerned microbes isolated are as follows: (a) A small amount of protease was found in the raw materials and 30-60% decrease in protease activity was demonstrated at 7% salt concentration. (b) Protease activity of halophilic bacteria, Bacillus subtilis 7-6, 11-1, 3-6 and 9-4 strains, in the complete media decreased by 10-30% at the 7% salt concentration and that of Sarcina litoralis 8-14 and 8-16 strains decreased by 10-20%. (c) Proteins in the raw materials were found to be hydrolyzed to yield free amino acids by protease in the fermenting microbes. (d) No accumulation of flavorous 5'-mononucleotides was demonstrated because RNA-depolymerase in the raw materials and the pickles tended to decompose RNA into nucleoside and phosphoric acid. (e) The enzyme produced in Bacillus subtilis 3-6 strain isolated from the salted clam pickles, was ascertained to be 5'-phosphodiesterase because of its ability to decompose RNA and thus accumulating 5'-mononucleotide. (f) It was demonstrated that the activity of phosphodiesterase in Bacillus subtilis 3-6 strain was enhanced by some components in the corn steep liquor and salted clam pickle. The enzyme activity was found to decrease by 10-30% and 40-60% at the salt concentration of 10% and 20%, respectively. 3. Quantitative data for free amino acids in the pickles are as follows: (a) Amounts of acidic amino acids such as glutamic and aspartic acids in salted clam pickle, were observed to be 2-10 times other pickles and it is considered that the abundance in these amino acids may contribute significantly to the specific flavor of this food. (b) Large amounts of basic amino acids such as arginine and histidine were found to occur in salted yellow tail pickle. (c) It is much interesting that in the salted cuttlefish pickle the contents of sulfur-containing amino acids were exceedingly high compared with those of others: cystine was found to be 17-130 times and methionine, 7-19 times. (d) In the salted oyster pickle a high content of some essential amino acids such as lysine, threonine, isoleucine and leucine, was demonstrated and a specific flavor of the pickle was ascribed to the sweet amino acids. Contents of alanine and glycine in the salted oyster pickle were 4 and 3-14 times as much as those of the others respectively. 4. Analytical data for 5'-mononucleotides in the pickles are as follows: (a) 5'-Adenylic acid and 3'-adenylic acid were found in large amounts in the salted yellow tail pickle and 5'-inosinic acid in lesser amount. (b) 5'-Adenylic acid, especially 3'-adenylic acid predominated in amount in the salted oyster pickle over that in the other pickles. (c) The salted cuttlefish pickle was found to contain only 5'-adenylic acid and 3'-adenylic acid. It has become evident from the above fact that clam and the invertebrate lack of adenylic deaminase and contain high content of adenylic acid. Thus, they were demonstrated to be the AMP-type. (d) 5'-Inosinic acid was contained in the salted yellow tail pickle in a significant concentration, and it might be considered to be IMP-type. 5. Comparative data for flavor with regard to the flavorous amino acids and the contents of 5'-mononucleotides are: (a) A specific flavor of salted yellow tail pickle was ascribed to the abundance in glutamic acid and aspartic acid, and to the existence of a small amount of flavorous 5'-inosinic acid. The combined effect of these components was belived to exhibit a synergistic action in producing a specific fiavor to the pickle. (b) A specific flavor of salted clam pickle has been demonstrated to be attributable to the richness in glutamic acid and aspartic acid rather than to that of 5'-mononucleotides.

  • PDF

The Study on The Snake Venom (사독(蛇毒)에 대한 문헌적(文獻的) 고찰(考察))

  • Lee, Jin-Seon;Kwon, Gi-Rok
    • Journal of Pharmacopuncture
    • /
    • v.2 no.1 s.2
    • /
    • pp.73-91
    • /
    • 1999
  • This study was carried out to invastigate the researches of Snake Venom and snakes which used in treatment 1. The fist literature that used the snake for treatment is Shin Nong Ben Cao Jing 2. Composition of Snake Venom is consist of Enzymatic proteins ; Phospholipase A(A1-2), Protease, L-amino acid oxidase etc, and Non-enzymatic proteins ; Crotamine(Cytolysin), Proteolytic factor(Hematoxin), Crotoxin(Neurotoxin) etc. 3. Main toxins in Snake Venom are Hematoxin, Cytolysin, Neurotoxin and Cardiotoxin. Lethal dose 50 value of Agkistrodon brevicaudus is $45.87{\mu}g$/18g, Agkistrodon saxatilis is $10.28{\mu}g$/18g, Agkistrodon ussuriensis is $8.68{\mu}g$/18g, therefore Agkistrodon ussuriensis has strongist Snake Venom of all in Korea. 4. Pharmacological actions of Snake Venom are anticoagulation, thrombolytic function, hypotensor etc. 5. Systemic syndromes and signs after snakebite are Dizziness(25.7%), Vomitting(23.1%), Fever(22%), Visual disturbance(18%), Headache(17.7%) and Dyspnea(17.6%), etc. 6. Local syndrome and sign after snakebite is Discoloration(54.2%), Bleeding(20.2%), Bullae(10.7%), Skinulcer(10.8%), etc. 7. Pathological syndromes after snakebite are WBC increase, Urine protein, Urine sugar, Haematuria and elevation of S-GDT, S-GPT etc. These syndromes are leaded by Hematoxin and Cytolysin. 8. Complication signs after snakebite are Cellulitis, Gastritis, Lympoma, Abscess etc. 9. Common function of Viperidae(Agkistrodon acutus or Zaocys dhumnades etc) is expelling the wind(祛風), removing obstruction in the channels(通絡), antipastic function(止痙). And it is used in order to cure hemiparesis, hemiplegia, facial palsy and CVA disease, etc. 10. Using way of snake for medical treatment is various like Herbal alchol therapy, pill, powder and injection etc. The Study on the Snake Venom should be carried out continuously for using of medical treatment.