• Title/Summary/Keyword: Main design parameter

Search Result 349, Processing Time 0.026 seconds

Hydrodynamic optimization of twin-skeg LNG ships by CFD and model testing

  • Kim, Keunjae;Tillig, Fabian;Bathfield, Nicolas;Liljenberg, Hans
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.392-405
    • /
    • 2014
  • SSPA experiences a growing interest in twin skeg ships as one attractive green ship solution. The twin skeg concept is well proven with obvious advantages for the design of ships with full hull forms, restricted draft or highly loaded propellers. SSPA has conducted extensive hull optimizations studies of LNG ships of different size based on an extensive hull data base with over 7,000 models tested, including over 400 twin skeg hull forms. Main hull dimensions and different hull concepts such as twin skeg and single screw were of main interest in the studies. In the present paper, one twin skeg and one single screw 170 K LNG ship were designed for optimally selected main dimension parameters. The twin skeg hull was further optimized and evaluated using SHIPFLOW FRIENDSHIP design package by performing parameter variation in order to modify the shape and positions of the skegs. The finally optimized models were then built and tested in order to confirm the lower power demand of twin skeg designed compaed with the signle screw design. This paper is a full description of one of the design developments of a LNG twin skeg hull, from early dimensional parameter study, through design optimization phase towards the confirmation by model tests.

State Observer Design Considering Modelling Errors and Parameter Variations (모델링 오차와 파라미터변동을 고려한 상태 관측기 설계)

  • Kim, Chan-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2078-2081
    • /
    • 1997
  • IP speed controller is used as a main controller and it makes the system low overshoot and easy controllability. Load torque is estimated by Kalman filter algorithm and parameter controller is used against a rotor inertia negative variations. Parameter Controller (PC) is equipped with a torque observer implemented by software of a digital signal Processor. PC is a parameter controller which selects a moment of inertia J in responding to a load torque to control the system response.

  • PDF

A Novel Parameter Initialization Technique for the Stock Price Movement Prediction Model

  • Nguyen-Thi, Thu;Yoon, Seokhoon
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.132-139
    • /
    • 2019
  • We address the problem about forecasting the direction of stock price movement in the Korea market. Recently, the deep neural network is popularly applied in this area of research. In deep neural network systems, proper parameter initialization reduces training time and improves the performance of the model. Therefore, in our study, we propose a novel parameter initialization technique and apply this technique for the stock price movement prediction model. Specifically, we design a framework which consists of two models: a base model and a main prediction model. The base model constructed with LSTM is trained by using the large data which is generated by a large amount of the stock data to achieve optimal parameters. The main prediction model with the same architecture as the base model uses the optimal parameter initialization. Thus, the main prediction model is trained by only using the data of the given stock. Moreover, the stock price movements can be affected by other related information in the stock market. For this reason, we conducted our research with two types of inputs. The first type is the stock features, and the second type is a combination of the stock features and the Korea Composite Stock Price Index (KOSPI) features. Empirical results conducted on the top five stocks in the KOSPI list in terms of market capitalization indicate that our approaches achieve better predictive accuracy and F1-score comparing to other baseline models.

Robust Observer-based $H_\infty$ Controller Design Method for Singular Systems with Parameter Uncertainties (매개변수 불확실성을 가지는 특이시스템의 강인 관측기 기반 $H_\infty$ 제어기 설계방법)

  • Kim Jong-Hae;Ahn Seong-Joon;Ahn Seung-Joon;Oh Do-Chang;Chi Kyeong-Koo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.1
    • /
    • pp.11-16
    • /
    • 2005
  • This paper considers a robust observer-based H/sub ∞/ controller design method for singular systems with parameter uncertainties using an LMI condition. The sufficient condition for the existence of controller and the controller design method are presented by a perfect LMI condition in terms of all variables using singular value decomposition, Schur complement, and change of variables. Therefore, one of the main advantages is that a robust observer-based H/sub ∞/ controller can be established by solving one LMI condition compared with existing results. Numerical example is given to illustrate the effectiveness of the proposed controller design method.

A Study on the Performance Improvement of a Nonlinear Fuzzy PID Controller (비선형 퍼지 PID 제어기의 성능 개선에 관한 연구)

  • 김인환;이병결;김종화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.852-861
    • /
    • 2003
  • In this paper, in order to improve the disadvantages of the fixed design-parameter fuzzy PID controller. a new fuzzy PID controller named a variable design-parameter fuzzy PID controller is suggested. The main characteristic of the suggested controller is to adjust design-parameters of the controller by comparing magnitudes between fuzzy controller inputs at each sampling time when controller inputs are measured. As a result. all fuzzy input partitioned spaces converge within a time-varying normalization scale. and the resultant PID control action can always be applied precisely regardless of operating input magnitudes. In order to verify the effectiveness of the suggested controller. several a computer simulations for a nonlinear system are executed and the control parameters of the variable design-parameter fuzzy PID controller are throughly analyzed.

Design of Spiral Spring in Sliding Mechanism for Mobile Phones Using Axiomatic Design (공리적설계를 이용한 휴대폰 슬라이드 기구의 스파이럴 스프링 설계)

  • Hwang, Eun-Ha;Han, Deok-Hee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.3
    • /
    • pp.171-177
    • /
    • 2007
  • It is well known that mobile phones have been a indispensable communication tool for human life. The spiral springs are used as the main component of the semi-auto sliding mechanism of mobile phones. The characteristic of axiomatic approach is scientific and analytical method, and axiomatic approach is different from other design methods in offering the systematic method at an early stage of design. The axiomatic approach could determine design parameter and arrange the order of design and estimate the optimum design in good order. In axiomatic approach, the composition is divided by customer requirement, functional requirement, design parameter, and design matrix in large portion. This paper presents design in sliding mechanism for mobile phones by finite element method and axiomatic design.

  • PDF

A Study on the Determination of the Main Design Parameters for the Development of Marine Stirling Engines (박용 스터링엔진 개발을 위한 주설계변수 결정에 관한 연구)

  • 이택희;이명호;이종원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.63-72
    • /
    • 1993
  • This paper deals with the determination of the main design parameters on the efficient .betha. type stirling engine for marine use having the rhombic drive mechanism. This studies are performed as following. (1) The characteristics of $\beta$ type stirling engine, (2) The kinds of driving mechanism, (3) The structure of rhombic drive mechanism, (4) The reasons of making choice of the rhombic drive mechanism in $\beta$ type stirling engines, (5) Ultimately the purpose of this paper is to determine the main design parameters of $\beta$ type stirling engines for marine use having the rhombic drive mechanism. Finally, We can adapt the result of this paper in designing of $\beta$ type stirling engine driven by the rhombic drive mechanism.

  • PDF

Enhancement of Blood Compatibility of Albumin-Immobilized Polyurethane

  • Gyu Ha Ryu;Don
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.269-274
    • /
    • 1992
  • In this paper, we describe the design methodology and specifications of the developed module-based bedside monitors for patient monitoring. The bedside monitor consists of a main unit and module cases with various parameter modules. The main unit includes a 12.1" TFT color LCD, a main CPU board, and peripherals such as a module controller, Ethernet LAN card, video card, rotate/push button controller, etc. The main unit can connect at maximum three module cases each of which can accommodate up to 7 parameter modules. They include the modules for electrocardiograph, respiration, invasive blood pressure, noninvasive blood pressure, temperature, and SpO2 with Plethysmograph.raph.

  • PDF

Development of a Module-Based Bedside Monitor for Patient Monitoring (모듈형 환자 모니터의 개발)

  • 우응제;박승훈
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.133-146
    • /
    • 1997
  • In this paper, we describe the design methodology and specifications of the developed module-based bedside monitors for patient monitoring. The bedside monitor consists of a main unit and module cases with various parameter modules. The main unit includes a 12.1" TFT color LCD, a main CPU board, and peripherals such as a module controller, Ethernet LAN card, video card, rotate/push button controller, etc. The main unit can connect at maximum three module cases, each of which can accommodate up to 7 parameter modules. They include the modules for electrocardiograph, respiration, invasive blood pressure, noninvasive blood pressure, temperature, and SpO with plethysmograph.raph.

  • PDF

Electrospun polyamide thin film composite forward osmosis membrane: Influencing factors affecting structural parameter

  • Ghadiri, Leila;Bozorg, Ali;Shakeri, Alireza
    • Membrane and Water Treatment
    • /
    • v.10 no.6
    • /
    • pp.417-429
    • /
    • 2019
  • Poly Sulfone nanofibers were electrospun to fabricate membranes of different characteristics. To fabricate the fiber mats, polymer concentration, flowrate, and current density were determined as the most influencing factors affecting the overall performance of the membranes and studied through Response Surface Methodology. The Box-Behnken Design method (three factors at three levels) was used to design, analyze, and optimize the parameters to achieve the best possible performance of the electrospun membranes in forward osmosis process. Also, internal concentration polarization that characterizes the efficiency of the forward osmosis membranes was determined to better assess the overall performance of the fabricated electrospun membranes. Water flux to reverse salt flux was considered as the main response to assess the performance of the membranes. As confirmed experimentally, best membrane performance with the minimal structural parameter value could be achieved when predicted optimal values were used to fabricate the membranes through electrospinning process.