• Title/Summary/Keyword: Main cutting edge

Search Result 53, Processing Time 0.027 seconds

Study on low-k wafer engraving processes by using UV pico-second laser (Low-k 웨이퍼 레이저 인그레이빙 특성에 관한 연구)

  • Nam, Gi-Jung;Moon, Seong-Wook;Hong, Yoon-Seok;Bae, Han-Seong;Kwak, No-Heung
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.11a
    • /
    • pp.128-132
    • /
    • 2006
  • Low-k wafer engraving process has been investigated by using UV pico-second laser with high repetition rate. Wavelength and repetition rate of laser used in this study are 355nm and 80MHz, respectively. Main parameters of low-k wafer engraving processes are laser power, work speed, assist gas flow rate, and protective coating to eliminate debris. Results show that engraving qualities of low-k layer by using UV pico-second pulse width and high repetition rate had better kerf edge and higher work speed, compared to one by conventional laser with nano-second pulse width and low repetition rate in the range of kHz. Assist gas and protective coating to eliminate debris gave effects on the quality of engraving edge. Total engraving width and depth are obtained less than $20{\mu}m$ and $10{\mu}m$ at more than 500mm/sec work speed, respectively. We believe that engraving method by using UV pico-second laser with high repetition rate is useful one to give high work speed of laser material process.

  • PDF

The characteristics of Ultra Precision Machine of Optical crystals for Infrared Ray (적외선 광학소자의 초정밀 절삭특성에 관한 연구)

  • Kim G.H.;Yang Y.S.;Kim H.S;Sin H.S.;Won J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.414-417
    • /
    • 2005
  • Single point diamond turning technique for optical crystals is studied in this paper. The main factors which are influential the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. The purpose of our research is to find the optimal machining conditions for ductile cutting of optical crystals and to apply the SPDT technique to the manufacturing of ultra precision optical components of brittle material(Ge). Many technical challenges are being tried for the large space infrared telescope, which is one of the major objectives of the National Strategic Technology Road Map (NSTRM).

  • PDF

Ultra-precision Machining of Space Telescope IR Camera Lens (초정밀 가공기를 이용한 적외선 우주망원경용 렌즈의 절삭가공기술개발)

  • Yang, Sun-Choel;Kim, Geon-Hee;Kim, Hyo-Sik;Shin, Hyun-Su;Hong, Kweon-Hee;Yoo, Jong-Sin;Kim, Dong-Rak;Park, Soo-Jong;Nam, Uk-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.2
    • /
    • pp.31-36
    • /
    • 2005
  • Machining technique for optical crystals with single point diamond turning tool is reported in this paper. The main factors influencing the machined surface quality are studied and regularities of machining process are drawn. Optical crystals have been known to more and more important applications in the field of modern optics. Ge is more brittle material of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. The purpose of our research is to find the optimum machining conditions for ductile cutting of Ge and apply the SPDTM technique to the manufacturing of ultra precision optical components of Ge. As a result, the surface roughness is the best when cutting speed is 180m/min, feed rate is 2mm/min, depth of cut is $0.5{\mu}m$ and nose radius of tool is 0.8mm.

  • PDF

Machine Learning Data Analysis for Tool Wear Prediction in Core Multi Process Machining (코어 다중가공에서 공구마모 예측을 위한 기계학습 데이터 분석)

  • Choi, Sujin;Lee, Dongju;Hwang, Seungkuk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.90-96
    • /
    • 2021
  • As real-time data of factories can be collected using various sensors, the adaptation of intelligent unmanned processing systems is spreading via the establishment of smart factories. In intelligent unmanned processing systems, data are collected in real time using sensors. The equipment is controlled by predicting future situations using the collected data. Particularly, a technology for the prediction of tool wear and for determining the exact timing of tool replacement is needed to prevent defected or unprocessed products due to tool breakage or tool wear. Directly measuring the tool wear in real time is difficult during the cutting process in milling. Therefore, tool wear should be predicted indirectly by analyzing the cutting load of the main spindle, current, vibration, noise, etc. In this study, data from the current and acceleration sensors; displacement data along the X, Y, and Z axes; tool wear value, and shape change data observed using Newroview were collected from the high-speed, two-edge, flat-end mill machining process of SKD11 steel. The support vector machine technique (machine learning technique) was applied to predict the amount of tool wear using the aforementioned data. Additionally, the prediction accuracies of all kernels were compared.

The Characteristics of Ultra Precision Machining of Optical Crystal (광학소자의 초정밀절삭 특성에 관한 연구)

  • 김주환;박원규;김건희;원종호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.529-532
    • /
    • 2003
  • Machining technique for optical crystals with single point diamond turning tool is reported in this paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency. poor ability to be automatically controlled and edge effect of the workpiece. The purpose of our research is to find the optimum machining conditions for ductile cutting of optical crystals and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle materials. As a result. the surface roughness is good when spindle speed is 200m/min. and teed rate is small. The influence of depth of cut is very small.

  • PDF

Dynamic Response Assessment of Space Use Telescope (우주용 광학구조체의 진동응답 평가)

  • Cho, Hee Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.87-93
    • /
    • 2015
  • The dynamic responses of a telescope loaded on an STSAT-3 satellite were analyzed, and environmental tests were conducted to verify the reliability of the design. The space use telescope COMIS (compact imaging spectrometer) is a major payload of the STSAT-3 launched on November 21, 2013. Vibration responses such as the acceleration, displacement, and velocity with respect to random vibration and shock impulse inputs were obtained based on theoretical fundamentals in conjunction with finite element analysis. The main focus of this study was on developing technology for accurate and/or favorable modeling and analysis of the structure and fitting the results to that of experiments. Cutting-edge technology for manipulating the vibrations of a space use telescope is suggested.

Selection of Cutting-edge IT-based Converging Technologies in the USA (특허분석을 통한 유망 IT융합기술 도출에 관한 연구)

  • Kim, Pang-Ryong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.313-315
    • /
    • 2011
  • Kodama 등 기술경영 분야의 연구자들은 IT와 같은 일반 목적기술은 다른 분야의 기술과 접목하여 새로운 기술기회를 창출하는 경향이 있다고 지적하고 있다. 따라서 시장가치가 큰 IT기반 융합기술을 발굴하는 것은 국가의 새로운 성장 동력을 발굴하는 시금석이 될 것이다. 본 연구에서는 세계 IT 기술시장을 선도하고 있는 미국의 특허 기술을 대상으로 유망 IT기반 부상융합기술 분야를 도출하였다. 분석 결과에 의하면 부상 융합기술은 국제특허분류의 main-group 수준에서 75개로 나타났으며, 그 중에서 가장 유망한 기술은 H01L21로 나타났다.

  • PDF

Proton Therapy Review: Proton Therapy from a Medical

  • Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.31 no.3
    • /
    • pp.99-110
    • /
    • 2020
  • With hope and concern, the first Korean proton therapy facility was introduced to the National Cancer Center (NCC) in 2007. It added a new chapter to the history of Korean radiation therapy. There have been challenging clinical trials using proton beam therapy, which has seen many impressive results in cancer treatment. Compared to the rapidly increasing number of proton therapy facilities in the world, only one more proton therapy center has been added since 2007 in Korea. The Samsung Medical Center installed a proton therapy facility in 2015. Most radiation oncology practitioners would agree that the physical properties of the proton beam provide a clear advantage in radiation treatment. But the expensive cost of proton therapy facilities is still one of the main reasons that hospitals are reluctant to introduce them in Korea. I herein introduce the history of proton therapy and the cutting edge technology used in proton therapy. In addition, I will cover the role of a medical physicist in proton therapy and the future prospects of proton therapy, based on personal experience in participating in proton therapy programs from the beginning at the NCC.

The principles of artificial intelligence and its applications in dentistry

  • Yoohyun Lee;Seung-Ho Ohk
    • International Journal of Oral Biology
    • /
    • v.48 no.4
    • /
    • pp.45-49
    • /
    • 2023
  • Digital dentistry has witnessed significant advancements in recent years, driven by extensive research following the introduction of cutting-edge technologies such as CAD/CAM and 3D oral scanners. Until now, 2D images obtained via x-ray or CT scans were critical to detect anomalies and for decision-making. This review describes the main principles and applications of supervised, unsupervised, and reinforcement learning in medical applications. In this context, we present a diverse range of artificial intelligence networks with potential applications in dentistry, accompanied by existing results in the field.

A Study Suggesting the Development Direction of the Next Generation Digital Library (차세대디지털도서관의 발전방향논의에 관한 연구)

  • Noh, Younghee
    • Journal of the Korean Society for information Management
    • /
    • v.31 no.2
    • /
    • pp.7-40
    • /
    • 2014
  • This study proposes to identify digital library services applying cutting-edge technologies, and attempt to investigate the applicability of these technologies and services to domestic libraries. To this end, we reviewed main research which discusses next generation digital libraries, and examined thoroughly main technologies which can be applied to future libraries. As a result, the core technologies, concepts, and tools of the next generation of digital library are: cloud services, space for infinite creating (makerspace), big data, augmented reality, context-aware technologies, Google-glass, a revolutionary display technology, open linked-content-offering method, and so on. Specific cases of libraries already utilizing these technologies are also discussed.