• 제목/요약/키워드: Main Wind Direction

검색결과 144건 처리시간 0.018초

장기체공무인기를 위한 제주도 모슬포 지역의 기상환경 분석 (The Analysis of Meterological Environment over Jeju Moseulpo Region for HALE UAV)

  • 조영준;안광득;이희춘;하종철;최규용;조천호;김수복
    • 한국군사과학기술학회지
    • /
    • 제18권4호
    • /
    • pp.469-477
    • /
    • 2015
  • In this study, the characteristics of main wind direction, vertical temperature and wind speed profile near the Moseulpo airfield for HALE UAV(High Altitude Long Endurance Unmaned Aerial Vehicle) is investigated. The results are summarized as follows, main wind direction is governed by air mass according to season and local wind such as land-sea breeze. The directions of landing and take-off of HALE UAV will be selected as the south-east direction in June ~ August, north-west direction in October ~ March, and south-east direction at daytime in April ~ May, September. Annual variation of temperature at 100 hPa showed that temperature in summer season is lower than winter season. On the other hands, wind speed at 250 hPa in winter season is higher than summer season. The threshold values of temperature and wind speed for HALE UAV flight are $-75^{\circ}C$ and $90ms^{-1}$, which were determined by 5 % frequency value($1.96{\sigma}$), respectively.

초고층건물 탁월풍 방향의 바람 특성에 관한 연구 (A Study on the Wind Characteristics of Skyscraper Prevailing Wind Direction)

  • 김재철;이규석
    • 환경영향평가
    • /
    • 제16권6호
    • /
    • pp.503-510
    • /
    • 2007
  • Since 1990s many skyscrapers have been built in Seoul. However, gusty winds occur among tall buildings by descending turbulences due to the upper air blocking. This study aims to investigate the wind characteristics of skyscraper prevailing wind direction. In order to evaluate the building wind in this area, The wind speed and the wind direction were measured using propeller type RM-Young wind monitor in this study. The maximum wind speed was recorded by 15.1 m/sec and the main wind direction is WNW and NW. The ultimate purpose of this study is to figure out the phenomena of building wind impact and also to provide essential basic data for establishing proper guidelines in building wind impact assessment for skyscrapers in Korea.

우리나라 근해구역의 계절별 평균 풍향$\cdot$풍속 고찰 (Seasonal Mean Wind Direction and Wind Speed in a Greater Coasting Area)

  • 설동일
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2003년도 추계학술발표회
    • /
    • pp.163-166
    • /
    • 2003
  • The seasonal mean wind direction and wind speed in a greater coasting area are investigated using the ECMWF(European Centre for Medium-Range Weather Forecasts) data for 11 years from 1985 to 1995. In winter, the main wind direction in Korea and vicinity, Taiwan and vicinity, and the North Pacific Ocean of middle latitudes is a northwesterly wind, northeasterly wind, and westerly wind respectively. The wind speed is strongest in the East China Sea, the South China Sea, and the North Pacific Ocean of low latitudes(Beaufort wind scale 5-6). A distribution pattern of wind direction in spring and fall is similar to that in winter. Seasonal mean wind speed is strongest in winter and the next is fall. The wind speed in summer is generally weak. However, that in the Indochina and vicinity is strong by the influence of Asian monsoon.

  • PDF

초고층건물 주변 겨울철 탁월풍과 도로협곡풍 특성에 관한 비교 연구 (A Comparison Study on the Street Canyon Wind and Prevailing Wind Characteristics at Skyscraper Area in Winter)

  • 김재철;이규석
    • 한국환경복원기술학회지
    • /
    • 제11권1호
    • /
    • pp.33-38
    • /
    • 2008
  • To investigate the building wind characteristics of skyscraper nearby areas, two points were selected and the wind speed and the wind direction data were measured using 2-D ultrasonic anemometer and propeller type wind monitor during the winter time. The study site is Dohgok-dong, Seoul. After measurement, wind data whose speed is equal to or more than Beaufort level five were selected, classified and analyzed in terms of direction, velocity level and hourly difference. The prevailing wind point is higher than street canyon in terms of intensity and frequency. The main direction is also different. This study aims to figure out the phenomena of building wind impact and also to provide essential basic data for establishing proper guidelines in building wind impact assessment for skyscrapers in Korea.

풍력발전기 증속기에 전달되는 풍하중 변동특성 연구 (A Study on Wind Load Variation Characteristics of Wind Turbine Gearbox)

  • 김정수;이형우;박노길;이동환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권2호
    • /
    • pp.267-275
    • /
    • 2012
  • 본 논문은 정상풍속과 돌발풍속을 수학적으로 모델링하고 풍향에 따라 전달되는 메인축에서의 전달모멘트를 조사하여 기어박스에 전달되는 풍하중의 특성을 파악하였다. 정상풍속은 지상에서 고도가 높아짐에 따라 속도가 증가하게 설정을 하였다. 풍하중에 의해서 메인축으로 전달되는 모멘트의 평균값과 하모닉값을 풍향 입사각을 $-45^{\circ}{\sim}45^{\circ}$로 변화를 주며 특성을 파악하였다. 또한 기어 트레인의 미스 얼라인먼트를 유발시키는 굽힘 모멘트의 특성을 파악하였다. 정상풍속모델에서는 블레이드의 3배수 주파수(3X)로 하는 토크의 가진이 생기며, 바람의 방향이 $+22.5^{\circ}$일 때 수평방향의 굽힘 모멘트가 주축으로 들어가는 토크의 50%수준으로 발생하는데 이는 수평방향으로의 탄성 축 휘임을 유발하여 치가 모서리에서 물림이 발생하게 하는 원인을 제공함을 알 수 있었다. 돌발풍속의 경우, 3X, 6X, 9X를 가진 주파수로 하는 토크의 가진이 바람의 방향이 +방향으로 커질수록 하모닉항의 상대 비율이 증가하였다.

이어도 해양과학기지가 주변 바람장에 미치는 영향 (Influences of Ieodo Ocean Research Station on the Ambient Wind Field)

  • 심재설;오병철;전인식
    • 한국해안해양공학회지
    • /
    • 제15권2호
    • /
    • pp.138-142
    • /
    • 2003
  • 이어도 해양과학기지가 주변의 바람장에 미치는 영향을 풍동실험을 통하여 검토하였다. 이어도 해양과 학기지에서 관측한 바람자료는 구조물로 인하여 풍속과 풍향의 왜곡이 발생하므로 정확한 풍속과 풍향을 알기 위해서는 관측자료에 구조물의 영향을 보정하여야 한다. 풍속비는 접근풍속의 크기보다는 풍속의 방향과 풍속 관측위치에 민감한 것으로 나타났다. 과학기지 옥상에 설치된 주 관측탑에서의 풍속은 모든 방향에서 접근풍속보다 크며 풍향 왜곡도는 6$^{\circ}$이내로 나타났다.

Joint distribution of wind speed and direction in the context of field measurement

  • Wang, Hao;Tao, Tianyou;Wu, Teng;Mao, Jianxiao;Li, Aiqun
    • Wind and Structures
    • /
    • 제20권5호
    • /
    • pp.701-718
    • /
    • 2015
  • The joint distribution of wind speed and wind direction at a bridge site is vital to the estimation of the basic wind speed, and hence to the wind-induced vibration analysis of long-span bridges. Instead of the conventional way relying on the weather stations, this study proposed an alternate approach to obtain the original records of wind speed and the corresponding directions based on field measurement supported by the Structural Health Monitoring System (SHMS). Specifically, SHMS of Sutong Cable-stayed Bridge (SCB) is utilized to study the basic wind speed with directional information. Four anemometers are installed in the SHMS of SCB: upstream and downstream of the main deck center, top of the north and south tower respectively. Using the recorded wind data from SHMS, the joint distribution of wind speed and direction is investigated based on statistical methods, and then the basic wind speeds in 10-year and 100-year recurrence intervals at these four key positions are calculated. Analytical results verify the reliability of the recorded wind data from SHMS, and indicate that the joint probability model for the extreme wind speed at SCB site fits well with the Weibull model. It is shown that the calculated basic wind speed is reduced by considering the influence of wind direction. Compared to the design basic wind speed in the Specification of China, basic wind speed considering the influence of direction or not is much smaller, indicating a high safety coefficient in the design of SCB. The results obtained in this study can provide not only references for further wind-resistance research of SCB, but also improve the understanding of the safety coefficient for wind-resistance design of other engineering structures in the similar area.

아파트의 실내외 공기질 향상을 위한 주동 배치 계획 연구 (A Study on the Site Planning of an Apartment Complex for Improving the Outdoor and Indoor Air Quality)

  • 신지웅;김태연;이경회
    • KIEAE Journal
    • /
    • 제4권3호
    • /
    • pp.195-202
    • /
    • 2004
  • This study focuses on the impacts of apartment building arrangements on the outdoor and indoor air quality - the efficiency of natural ventilation in the outside/inside area of an apartment with consideration to the characteristics of an air flow in outside area depending on the types of the arrangements, the main direction of the wind, and the outside wind pressure on the building facade. As indices to evaluate the efficiency of natural ventilation, the concepts of "Age of Air" and "Purging Flow Rate(PFR)" were used in this study. As indices to classify the efficiency of indoor natural ventilation, the mean values of the wind pressure differences between the front and the back elevations of an apartment building were used. The research showed that the PFR of each apartment building arrangement ranges from 0.867 to 3.253. The "minus-shaped" arrangement showed the highest PFR, 2.306; the "zigzag-shaped" arrangement measured 1.889; the "angle-shaped" arrangement measured 1.465, and the "square-shaped" arrangement measured 1.241. Depending on the direction of the wind, the pressure differences range extremely, with variations from 170% to 2300%. Thus, the indoor natural ventilation efficiency can be changed by the pressure differences of the wind, which are sensitive to the main direction of the wind even though the structure and planning of the apartment complexes are the same. Despite the same direction of the wind, even the efficiency can be diverse. This study showed how to predict the most beneficial apartment building arrangement for the profitable natural ventilation efficiency in each direction of the wind.

지역기후기능을 고려한 주거단지계획기법에 관한 연구 - 바람길을 중심으로 - (A Study on Method of Planning for a Residential Unit under Consideration of Local Climate - Focused on Wind Corridor -)

  • 김태욱;정응호;류지원;박지혜
    • 한국주거학회논문집
    • /
    • 제18권2호
    • /
    • pp.105-112
    • /
    • 2007
  • This research has been implemented based on the area of #369 Dowon-dong, Dalseo-gu, Dae-gu which is considered as a place with satisfactory characteristics for the flow of fresh air into the city. Simulations of the target area both prior to the development plan and after apartment complex blocking were analyzed in regard to blocking planning and pilotis based on the main direction of wind, $90^{\circ}$ (east wind) and $180^{\circ}$ (south wind). In addition, congested wind corridor flow in the target place was identified through a pollution spread simulation according to the wind corridor. Therefore, the flow of wind in the one area is affected by the blocking of the complex and the main direction of the wind. Also blocking, in regard of pilotis, provides a better flow of wind. This study was implemented based on wind formation by apartment complex planning, so further study on the other factors affecting the flow of a wind corridor along with block planning and pilotis need to be carried out. Sustainable environmental factors through analysis of the environmental factors have to be analyzed. Moreover, building and complementing fundamental resources and systematic devices should be supported.

A Study of Wind Characteristics around Nuclear Power Plants Based on the Joint Distribution of the Wind Direction and Wind Speed

  • Yunjong Lee
    • 방사선산업학회지
    • /
    • 제17권3호
    • /
    • pp.299-307
    • /
    • 2023
  • Given that toxic substances are diffused by the various movements of the atmosphere, it is very important to evaluate the risks associated with this phenomenon. When analyzing the behavioral characteristics of these atmospheric diffusion models, the main input data are the wind speed and wind direction among the meteorological data. In particular, it is known that a certain wind direction occurs in summer and winter in Korea under the influence of westerlies and monsoons. In this study, synoptic meteorological observation data provided by the Korea Meteorological Administration were analyzed from January 1, 2012 to the end of August of 2022 to understand the regional wind characteristics of nuclear power plants and surrounding areas. The selected target areas consisted of 16 weather stations around the Hanbit, Kori, Wolsong, Hanul, and Saeul nuclear power plants that are currently in operation. The analysis was based on the temperature, wind direction, and wind speed data at those locations. Average, maximum, minimum, median, and mode values were analyzed using long-term annual temperature, wind speed, and wind direction data. Correlation coefficient values were also analyzed to determine the linear relationships among the temperature, wind direction, and wind speed. Among the 16 districts, Uljin had the highest wind speed. The median wind speed values for each region were lower than the average wind speed values. For regions where the average wind speed exceeds the median wind speed, Yeongju, Gochang, Gyeongju, Yeonggwang, and Gimhae were calculated as 0.69 m s-1, 0.54m s-1, 0.45m s-1, 0.4m s-1, and 0.36m s-1, respectively. The average temperature in the 16 regions was 13.52 degrees Celsius; the median temperature was 14.31 degrees and the mode temperature was 20.69 degrees. The average regional temperature standard deviation was calculated and found to be 9.83 degrees. The maximum summer temperatures were 39.7, 39.5, and 39.3 in Yeongdeok, Pohang, and Yeongcheon, respectively. The wind directions and speeds in the 16 regions were plotted as a wind rose graph, and the characteristics of the wind direction and speed of each region were investigated. It was found that there is a dominant wind direction correlated with the topographical characteristics in each region. However, the linear relationship between the wind speed and direction by region varied from 0.53 to 0.07. Through this study, by evaluating meteorological observation data on a long-term synoptic scale of ten years, regional characteristics were found.