• Title/Summary/Keyword: Main Spray

Search Result 276, Processing Time 0.024 seconds

A Study of the Relation Between Nozzle Geometry, Internal flow and Sprays Characteristics in Diesel Fuel Injection Systems

  • Payri, Raul;Molina, S.;Salvador, F.J.;Gimeno, J.
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1222-1235
    • /
    • 2004
  • This study examines the influence of geometry on the internal flow and macroscopic behavior of the spray in Diesel nozzles. For this investigation, two bi-orifice nozzles were employed: one cylindrical and one conical. The first step is to use a non-destructive characterization method which is based on the production of silicone moulds so that the precise internal geometry of the two nozzles can be measured. At this stage the nozzles have been characterized dimensionally and therefore the internal flow can be studied using CFD calculations. The results gained from this experiment make it possible also to ascertain the critical cavitation conditions. Once the critical cavitation conditions have been identified, the macroscopic parameters of the spray can be studied in both cavitating and non-cavitating conditions using a test rig pressurized with nitrogen and with the help of a image acquisition system and image processing software. Consequently, research can be carried out to determine the influence that cavitation has on macroscopic spray behavior. From the point of view of the spray macroscopic behavior, the main conclusion of the paper is that cavitation leads to an increment of the spray cone angle. On the other hand, from the point of view of the internal flow, the hole outlet velocity increases when cavitation appears. This phenomenon can be explained by the reduction in the cross section of the liquid phase in the outlet section of the hole.

A study on distribution of drop size and injection rate of air-shroud injector sprays under steady and transient injection condition (정상.과도 분사 조건에서의 에어슈라우드 인젝터 분무의 입경.분사량 분포에 관한 연구)

  • Lee, C.H.
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.17-23
    • /
    • 2004
  • Spray characteristics of a twin-hole air shrouded nonle designed for gasoline injectors was investigated by using laser diffraction particle analyzer (LDPA) and tomography reconstruction- A confined spray chamber which is optically accessible through a pair of glass windows was made to simulate the fuel injection condition in intake manifold of gasoline engine. The measurement was applied to the twin hole injector with and without an air shroud. It demonstrates that for the case with an air shroud, fine atomization is achieved and there exists a large number of fine droplets between the region of the main spray streams, which conforms with the spray visualization. The drop size distribution was investigated as a function of elapse time after fuel injection. The distribution was greatly affected by the measurement position from the injector exit. Also, the spatially resolved spray volume fraction and Sauter Mean Diameter (SMD) from line-of-sight data of the LDPA are tomographically reconstructed by Convolution Fourier transformation under the steady injection condition.

  • PDF

A Numerical Analysis on the Characteristics of Spray by Swirl Injector in Gas Turbine Combustor (가스터빈연소기에서 스월 인젝터의 분무특성에 관한 연구)

  • 이성혁;유홍선;이인섭;홍성국
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.30-39
    • /
    • 2000
  • The present paper deals with the numerical simulation for the spray characteristics with swirling turbulent flows and dilution flows from swirl injectors in a simplified can type of gas turbine combustor. The main objective is to investigate the characteristics of swirling turbulent flows with dilution flows and to provide the qualitative results for the spray characteristics such as the droplet distribution and Sauter Mean Diameter(SMD). The gas-phase equations based on Eulerian approach were discretized by Finite Volume Method, together with SIMPLE algorithm and the Reynolds -Stress-Model. The liquid-phase equations based on Lagrangian method were used to predict the droplet behavior. The results of preliminary test are generally in good agreement with experimental data, and show that the anisotropy exists in the primary zone due to swirl velocity and injected air from primary injector, and then gradually decays due to turbulent mixing and consequently near-isotropy occurs in the region between primary and dilution zones. For the spray characteristics, it is indicated that the swirling flows of primary jet region increase the droplet atomization. In addition, it is showed that the swirling flows at the inlet region lead the air-fuel mixture to be distributed near the igniter and can significantly affect the spray behavior in the primary jet region.

  • PDF

MICROMETEOROLOGY IN PADDY FIELD AND ITS APPLICATION TO ESTIMATION OF SPRAY DRIFT

  • J. Y. Rhee;E. S. An;Kim, Y. J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.749-756
    • /
    • 2000
  • Chemical application, one of the most important crop management processes happened to cause spray drift, that would threaten farmers in field as well as dwellers in rural region. Spray drift was affected by micro-meteorological parameters. In Korea, a boom sprayer was introduced but good effects of a boom sprayer was not evaluated. A study to evaluate short distance drift characteristics of a boom sprayer in paddy fields has been undergoing and determining wind characteristics in paddy field was the main purpose of this paper. Micro-meteorological information has been pre-requisite information for evaluating drift in both long and short distances or in both theoretical and experimental ways. Wind velocity, Reynolds stresses, turbulence intensity, skewness, kurtosis etc. were evaluated with height from the ground using a 2-dimensional probe and a hot wire anemometer system.

  • PDF

A Study on Pressure Drop and Flow Rate of High Viscosity Paint (고점도 도료의 압력손실 및 분사량에 관한 연구)

  • Baek, J.J.;Chung, M.K.;Shin, C.S.;Baek, K.K.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.786-791
    • /
    • 2003
  • We have studied on the main causes of pressure drop in the paint hose under the spraying with airless spray pump and suggest calculation method for selecting the optimum pressure drop during the spraying. Among many factors contributing the pressure drop during the airless spraying procedure of paint, some of the key factors and the correct method for checking pressure loss between airless pump and spray gun are addressed. We have developed pressure loss calculation method which depending on hose length and diameter, viscosity and flow rate in the painting hose during the spraying. also we have developed calculation equation for the expected spray tip flow rate which depending on pressure and specific gravity and tip size.

  • PDF

Effects of heat treatment on Fe-Al Alloy Layers Formed by Al Powder Spray (Al분말 분사에 의해 생성된 Fe-Al합금 피막층의 열처리에 따른 영향)

  • 양병모;박정직;박광정;박경채
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.92-98
    • /
    • 1996
  • Al-Fe alloy layers on heated steel sheet were made by Al powder spray for 30 minutes at $700^{\circ}C$, $800^{\circ}C$ and $1000^{\circ}C$, respectively. As a results, for alloy layers formed at $700^{\circ}C$ and $800^{\circ}C$, main phases were brittle phase $FeAl_3 and Fe_2Al_5$, hardnesses were very high (Hv 700~800), corrosion resistances were good and surfaces were smooth, but wear resistances were bad. For alloy layer formed at $1000^{\circ}C$, main phase was ductile phase $Fe_3Al$, hardness was low (Hv 300~400), corrosion and wear resistances were excellent, but surface was rough. Therefore, alloy layers that formed at $700^{\circ}C$ and $800^{\circ}C$ were heat treated at $1000^{\circ}C$ for 10 minutes for the purpose of smooth surface and excellent wear resistance in this study. It was investigated that brittle phase $FeAl_3 and Fe_2Al_5$ of alloy layers fromed by Al powder spray at $700^{\circ}C$ and $800^{\circ}C$ turn into ductile phase $Fe_3Al$ by heat treated at $1000^{\circ}C$ for 10 minutes without changing smooth surface. It was concluded that the alloy layers formed by Al powder spray on heated steel sheet at $700^{\circ}C$ and $800^{\circ}C$ for 30 minutes and heat treated at $1000^{\circ}C$ for 10 minutes were excellent on wear and smooth surface.

  • PDF

Effects of Ambient Conditions on the Atomization of Direct Injection Injector (분위기 조건이 직접분사식 인젝터의 미립화에 미치는 영향)

  • Lee, J.S.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.25-34
    • /
    • 2001
  • Several efforts to meet the exhaust gas regulation have been undertaken by many researchers in recent years. Main researches are on development of design techniques of intake port and combustion chamber, atomisation of fuel and precise control of air-fuel ratio, post-treatment of exhaust gas and so on. Engine technology is changed from PFI to GDI to correspond with exhaust gas regulation. GDI technique makes it possible to preserve lean air-fuel ratio and control accurate air-fuel ratio. Nevertheless, It is not cleared that information of spray characteristics and atomization process are very dependent on fluctuation of pressure and change of temperature in intake stroke. In this study, a constant volume combustion chamber is manufactured to investigate various fluctuations of in-cylinder pressure for injection duration. It is taken photographs of injection process of conventional GDI injector using PMAS. Then, it was verified experimently that ambient conditions as temperature and pressure of combustion chamber have effects on process of spray growth and atomization of fuel.

  • PDF

Determination of Diesel Sprays Characteristics in Real Engine In-Cylinder air Density and Pressure Conditions

  • Payri Raul;Salvador F. J.;Gimeno J;Soare V.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2040-2052
    • /
    • 2005
  • The present paper centers on the establishment of a quantified relationship between the macroscopic visual parameters of a Diesel spray and its most influential factors. The factors considered are the ambient gas density, as an external condition relative to the injection system, and nozzle hole diameter and injection pressure as internal ones. The main purpose of this work is to validate and extend the different correlations available in the literature to the present state of the Diesel engine, i.e. high injection pressure, small nozzle holes, severe cavitating conditions, etc. Five mono-orifice, axi-symmetrical nozzles with different diameters have been studied in two different test rigs from which one can reproduce solely the real engine in-cylinder air density, and the other, both the density and the pressure. A parametric study was carried out and it enabled the spray tip penetration to be expressed as a function of nozzle hole diameter, injection pressure and environment gas density. The temporal synchronization of the penetration and injection rate data revealed a possible explanation for the discontinuity observed as well by other authors in the spray's penetration law. The experimental results obtained from both test rigs have shown good agreement with the theoretical analysis. There have been observed small but consistent differences between the two test rigs regarding the spray penetration and cone angle, and thus an analysis of the possible causes for these differences has also been included.

An Experimental Study on Application of Biofuel to Diesel Engine (바이오연료의 디젤엔진 적용에 관한 실험연구)

  • Yeom, Jeong-Kuk;Ha, Hyeong-Soo
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.29-37
    • /
    • 2013
  • Compared to gasoline engines, diesel engines with a relatively simple ignition system are more advantageous in the application of biodeisel fuel to engine. Then in this study the comparative analysis on the spray characteristics and combustion emissions characteristic between the biodiesel(soybean oil) and diesel, the fuel for commercial diesel engine, was performed with common rail injection system. Injection pressure and ratio of biodiesel blended fuel were selected as main experimental variables. Consequently, it can be found that there is no significant difference in the macro characteristics of the spray behavior(spray penetration and spray angle) in response to change in the blend ratio of soybean oil and diesel at a fixed injection pressure, in particular, soot creation in combustion emissions in the region of low pressure was greatly affected by the blend ratio of soybean oil, however, the creation in the region of high pressure was almost unaffected by the blend ratio because of promoted atomization.

Quantitative Analysis of the Impact of Inlet Duct Spray on Scrubbing Efficiency using Experimental Design (실험계획법을 이용한 입구덕트 스프레이의 습식 세정 효율 변화효과 분석 연구)

  • Lee, Minwoo;Kim, Hyun Ho;Koo, Junemo
    • Journal of ILASS-Korea
    • /
    • v.24 no.1
    • /
    • pp.8-14
    • /
    • 2019
  • The purpose of this study is to develop a packing-free wet scrubber to prolong the maintenance interval compared with the conventional packed bed wet scrubbers with which frequent operation stops are unavoidable to clean the packing materials. The main- and interaction-effects were quantitatively analyzed by regression analysis for the measured ammonia scrubbing data from the experiments prepared by experimental design. The scrubbing efficiency of the newly developed wet scrubber was found to be over 95% under the condition of flue gas flow rate of 90CMM and liquid-to-gas ratio $2l/m^3$ for all considered trials of experimental design. The interaction effect between the inlet duct spray and the filter was found to be important, which controls the droplet growth due to the droplet collisions between the duct- and scrubbing tower-spray. The presented methodology to analyze the impacts of operational and design factors on the scrubber efficiency showed potential for applications to optimize the future flue gas abatement process in semiconductor plants.