• Title/Summary/Keyword: Main Rotor Blade

Search Result 84, Processing Time 0.025 seconds

Structural Optimum Design of Composite Rotor Blade (복합재 로터 블레이드의 구조 최적설계)

  • Park, Jung-Jin;Lee, Min-Woo;Bae, Jae-Sung;Lee, Soo-Yong;Kim, Seok-Woo
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.3
    • /
    • pp.26-31
    • /
    • 2007
  • This paper addresses a method for structural optimum design of composite rotor blade. The basic model of a composite helicopter main rotor blade is designed and its parameters determining the structural/dynamic properties are studied. Through the investigation of flap/lag/torsional stiffness, the structural properties of the model are analyzed. In this study, helicopter rotor blades are analyzed by using VABS. The computer program VABS (Variational Asymptotic Beam Section Analysis) uses the variational asymptotic method to split a three-dimensional nonlinear elasticity problem into a two dimensional cross-sectional analysis and a one-dimensional nonlinear beam problem. This is accomplished by taking advantage of certain small parameters inherent to beam-like structures. In addition, the rotational stability of the blade is estimated by the frequency diagram from FE analysis(MSC.Patran/Nastran) to understand its vibrational property. From the result, design parameters to determine and optimize the properties of the model are presented.

  • PDF

Numerical simulation and investigation of jet impingement cooling heat transfer for the rotor blade

  • Peiravi, Amin;Bozorg, Mohsen Agha Seyyed Mirza;Mostofizadeh, Alireza
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.6
    • /
    • pp.537-551
    • /
    • 2020
  • Investigation of leading edge impingement cooling for first stage rotor blades in an aero-engine turbine, its effect on rotor temperature and trailing edge wake loss have been undertaken in this study. The rotor is modeled with the nozzle for attaining a more accurate simulation. The rotor blade is hollowed in order for the coolant to move inside. Also, plenum with the 15 jet nozzles are placed in it. The plenum is fed by compressed fresh air at the rotor hub. Engine operational and real condition is exerted as boundary condition. Rotor is inspected in two states: in existence of cooling technique and non-cooling state. Three-dimensional compressible and steady solutions of RANS equations with SST K-ω turbulent model has been performed for this numerical simulation. The results show that leading edge is one of the most critical regions because of stagnation formation in those areas. Another high temperature region is rotor blade tip for existence of tip leakage in this area and jet impingement cooling can effectively cover these regions. The rotation impact of the jet velocity from hub to tip caused a tendency in coolant streamlines to move toward the rotor blade tip. In addition, by discharging used coolant air from the trailing edge and ejecting it to the turbines main flow by means of the slot in trailing edge, which could reduce the trailing edge wake loss and a total decrease in the blade cooling loss penalty.

Characteristics of Rotor Blade Tip Vortices with Spanwise Slots (스팬방향 슬롯을 가지는 회전익 끝와류의 특성)

  • Chung, Woon-Jin;Han, Yong-Oun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1343-1350
    • /
    • 2000
  • The evolutionary structure of tip vortices has been investigated with a two-dimensional LDV system for a plain and a slotted blade, respectively. To analyze the effect of slots which bypasses a part of main stream into the tip face, velocity profiles, vortex sizes, their displacements and turbulence intensities during one revolution of the rotor were measured by the phase averaging process. For the comparison of circumferential velocity components of the plain blade and the slotted blade, the peak values of the slotted blade were lower than those of the plain blade, and axial velocity components of the slotted blade were considerably larger than those of the plain blade. The slotted rotor blade enlarged the core size and made the vortex delayed compared with those of the plain blade at the same wake ages. Turbulence profiles had peaks inside the core radii and decayed gradually in the radial direction of vortex coordinate. Also, using a quasi 3-D LDV measurement technique the budget of turbulence kinetic energy was analyzed in radial direction of the vortex core.

Vibration Prediction of Helicopter Airframe (헬리콥터 동체의 진동 예측)

  • Yun, Chul Yong;Kim, Do-Hyung;Kang, Hee Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.340-346
    • /
    • 2013
  • This paper describes a helicopter vibration induced by main rotor in forward flight. The hub loads in the fixed frame, which are dominant source of helicopter vibration, are obtained by multi-blade summation of rotating blades loadings. The components of 3/rev, 4/rev, and 5/rev blades loadings are transmitted by blades to 4/rev hub loads in the fixed frame. The vertical vibrations of helicopter at pilot seat and copilot seat are calculated through rigid body transfer functions considering airframe to be rigid body. The blades are assumed to be elastic and undergo the flap, lag, and torsion motion and free wake aerodynamic model is used to calculate the precise blade loadings in the analysis. The 4/rev vertical vibration responses are analyzed from rotating blade loadings and fixed hub loadings.

  • PDF

Aerodynamic Design Optimization of A Transonic Axial Compressor Rotor with Readjustment of A Design Point (설계유량을 고려한 천음속 축류압축기 동익의 삼차원 형상최적설계)

  • Ko, Woo-Sik;Kim, Kwang-Yong;Ko, Sung-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.639-645
    • /
    • 2003
  • Design optimization of a transonic compressor rotor (NASA rotor 37) using response surface method and three-dimensional Navier-Stokes analysis has been carried out in this work. Baldwin-Lomax turbulence model was used in the flow analysis. Two design variables were selected to optimize the stacking line of the blade, and mass flow was used as a design variable, as well, to obtain new design point at peak efficiency. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, adiabatic efficiency was successfully improved, and new design mass flow that is appropriate to an improved blade was obtained. Also, it is found that the design process provides reliable design of a turbomachinery blade with reasonable computing time.

  • PDF

Signal Processing Algorithm to Reduce RWR Electro-Magnetic Interference with Tail Rotor Blade of Helicopter

  • Im, Hyo-Bin;Go, Eun-Kyoung;Jeong, Un-Seob;Lyu, Si-Chan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.117-124
    • /
    • 2009
  • In the environment where various and complicated threat signals exist, RWR (Radar Warning Receiver), which can warn pilot of the existence of threats, has long been a necessary electronic warfare (EW) system to improve survivability of aircraft. The angle of arrival (AOA) information, the most reliable sorting parameter in the RWR, is measured by means of four-quadrant amplitude comparison direction finding (DF) technique. Each of four antennas (usually spiral antenna) of DF unit covers one of four quadrant zones, with 90 degrees apart with nearby antenna. According to the location of antenna installed in helicopter, RWR is subject to signal loss and interference by helicopter body and structures including tail bumper, rotor blade, and so on, causing a difficulty of detecting hostile emitters. In this paper, the performance degradation caused by signal interference by tail rotor blades has been estimated by measuring amplitude video signals into which RWR converts RF signals in case a part of antenna is screened by real tail rotor blade in anechoic chamber. The results show that corruption of pulse amplitude (PA) is main cause of DF error. We have proposed two algorithms for resolving the interference by tail rotor blades as below: First, expand the AOA group range for pulse grouping at the first signal analysis phase. Second, merge each of pulse trains with the other, that signal parameter except PRI and AOA is similar, after the first signal analysis phase. The presented method makes it possible to use RWR by reducing interference caused by blade screening in case antenna is screened by tail rotor blades.

A Study on the Helicopter Composite Blade Impact Loads (헬리콥터 복합재 블레이드 충돌하중 연구)

  • Lee, Hyun-Cheol;Jeon, Boo-Il;Moon, Jang-Soo;Yee, Seok-June
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.181-186
    • /
    • 2009
  • The objective of this study is ensuring safety of cabin when the blade impacts into a obstacle by verifying safety of the rotor mast and the transmission using impact loads calculated from the simulation. The rotor mast shall not fail and the transmission shall not be displaced into occupiable space when the main rotor composite blade impact into a 8 inch rigid cylinder in diameter on the outer 10% of the blade at operational rotor speed. To calculate the reaction loads at the spherical bearing and lead-lag damper, blade impact analysis was performed with FE model consist of composite blade, tree(or rigid cylinder) using elastic-plastic with damage material and several contact surfaces which were created to describe a progress of actual failure. Also, the reaction loads were investigated in change of blade rotation speed and pitch angle.

Aerodynamic Noise Analysis of High Speed Wind Turbine System for Design Parameters of the Rotor Blade (고속 회전 풍력 시스템의 로터 설계 인자에 따른 공력 소음 해석 연구)

  • Lee, Seung-Min;Kim, Ho-Geon;Son, Eun-Kuk;Lee, Soo-Gab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.521-524
    • /
    • 2009
  • This study describes aerodynamic noise of high speed wind turbine system, which is invented as a new concept in order to reduce the torque of main shaft, for design parameters of the rotor blade. For parametric study of high speed rotor aerodynamic noise, Unsteady Vortex Lattice Method with Nonlinear Vortex Correction Method is used for analysis of wind turbine blade aerodynamic and Farassat1A and Semi-Empirical are used for low frequency noise and airfoil self noise. Parameters are chord length, twist and rotational speed for this parametric research. In the low frequency range, the change of noise is predicted the same level as each parameters varies. However, in case of broadband noise of blade, the change of rotational speed makes more variation of noise than other parameters. When the geometric angles of attack are fixed, as the rotational speed is increased by 5RPM, the noise level is increased by 4dB.

  • PDF

THE INVESTIGATION OF THE AERO-ACOUSTIC ANALYSIS METHODS FOR THE HELICOPTER BLADE (헬리콥터 블레이드 공력 소음 해석 기법 연구)

  • Park, N.E.;Woo, C.H.;Lee, S.G.;Yee, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.302-307
    • /
    • 2008
  • The development technology for the helicopter is improved by the increasing of computing power and advanced test facilities. The increasing efficiency of fuel consuming by the developing of improved lift-to-drag rotor system is the major issue, the noise reduction for ecology(civil area) and increase of survivability to reduce noise detection(battlefield) also are important. This investigation shows the classification of helicopter external noise and requirements, the noise flight test methods, the numerical modeling method for aero-acoustic of rotor blade and the result of CAA(Computational Aero-Acoustic) for main rotor blade.

  • PDF

THE INVESTIGATION OF THE AERO-ACOUSTIC ANALYSIS METHODS FOR THE HELICOPTER BLADE (헬리콥터 블레이드 공력 소음 해석 기법 연구)

  • Park, N.E.;Woo, C.H.;Lee, S.G.;Yee, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.302-307
    • /
    • 2008
  • The development technology for the helicopter is improved by the increasing of computing power and advanced test facilities. The increasing efficiency of fuel consuming by the developing of improved lift-to-drag rotor system is the major issue, the noise reduction for ecology(civil area) and increase of survivability to reduce noise detection(battlefield) also are important. This investigation shows the classification of helicopter external noise and requirements, the noise flight test methods, the numerical modeling method for aero-acoustic of rotor blade and the result of CAA(Computational Aero-Acoustic) for main rotor blade.

  • PDF