• Title/Summary/Keyword: Main Rotor

Search Result 340, Processing Time 0.032 seconds

A Study of Fatigue Load for Rotor Blades of the Utility Helicopter (다목적 헬리콥터 로터 블레이드 피로하중에 대한 연구)

  • Oh, Man-Seok;Kim, Hyun-Duk;Park, Jung-Sun;Gi, Yeong-Jung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.648-653
    • /
    • 2007
  • In this study, we have generated fatigue load spectrum that is using to prediction of life time for the helicopter rotor blades. We derive utility helicopter missions for the sake of generating load spectrum. Helix and Felix are standard loading sequences which relate to the main rotors of helicopters with articulated and semi-rigid rotors respectively. We got scale factors which is applied to specific case and it did be obtained through the finite element analysis tools. The fatigue life of the rotor blade is estimated by using MSC/Fatigue. We suggest that generated our fatigue load spectrum in conjunction with small utility helicopter should use to rotor blade fatigue test of the korea helicopter program.

  • PDF

Internal Flow and Limiting Streamlines Observations of Contra-Rotating Axial Flow Pump at Partial Flow Rate

  • Watanabe, Satoshi;Momosaki, Shimpei;Usami, Satoshi;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.2
    • /
    • pp.235-242
    • /
    • 2011
  • An application of contra-rotating rotors, in which a rear rotor is in tandem with a front one and these rotors rotate in the opposite direction each other, has been proposed against a demand for developing higher specific speed axial flow pump. One prototype rotors, which we have designed with a conventional method, has given the positive slope of head characteristic curve especially in the rear rotor. It is necessary to understand the internal flow behavior in the rear rotor to establish the design guideline for achieving higher and more reliable performance. In the present study, we carried out the experimental investigations of the internal flow field of the rear rotor, especially at the partial flow rate, by Laser Doppler Velocimetry (LDV) for the main flow and the limiting streamlines observation on rotor surfaces for the boundary layer flows.

A Study on the Cross Sectional Properties Considering Bending-Shear Coupling Effect of Composite Rotor Blade (굽힘-전단 연성을 고려한 단면특성값이 복합재료 회전익에 미치는 영향에 관한 연구)

  • 오택열
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.89-95
    • /
    • 1998
  • This paper focuses on the effect of structural coupling in the behavior of composite rotor blade. We have searched for bending, extension and shear coupling term with the ply angle of rotor blade and the dynamic behavior of rotor blade for each coupling term. It was found that natural frequency increases as the rotating speed of rotor blade increases. In the couplings with feathering, bending coupling is main parameter, because bending coupling term is larger than shear . Also, the couplings with feathering is less effective in 0$^{\circ}$, 90$^{\circ}$, of ply angle and more variable at blade tip.

Rotordynamic Influences of a Tie Shaft in a APU Gas Turbine Rotor-Bearng System (보조동력 개스터빈 로터-베어링 시스템에서 체결축의 로터다이나믹 영향)

  • Lee, An-Sung;Lee, Young-Seob
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1051-1057
    • /
    • 2000
  • A projected 100 kW APU gas turbine rotor-bearing system has a main outer shaft, which is composed of some numbers of segmented sections for manufacturing and assembly conveniences. For a secure assembly of the segmented sections a tie shaft or inner shaft is installed inside of the outer shaft and a tensional axial preload of 50,000 N is provided to it. In this paper it is intended to set-up a sound modeling method of the APU rotor system, and particularly, the influences of the tie shaft on the rotordynamic characteristics of the entire APU gas turbine rotor-bearing system are investigated. Analysis results show that as a conservative design practice the inner tie shaft should be actively modeled in the rotordynamic analysis of the APU rotor-bearing system, and its effects on the dynamic behaviors of the outer shaft should be thoroughly design-reviewed.

  • PDF

Feature Parameter Analysis for Rotor Fault Diagnosis (회전체 결함 진단을 위한 특징 파라미터 분석)

  • Jeoung, Rae-Hycuk;Chai, Jang-Bom;Lee, Byoung-Hak;Lee, Do-Hwan;Lee, Byung-Kon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.31-38
    • /
    • 2012
  • Rotor of rotating machinery is the highly damaged part. Fault of 7 different types was confirmed as the main causes of rotor damage from the pump failure history data in domestic and U.S. nuclear. For each fault types, simulation testing was performed and fault signals were collected form the sensors. To calculate the statistical parameters of time-domain & frequency-domain, measured signals were analyzed by using the discrete wavelet transform, fast fourier transform, statistical analysis. Total 84 parameters were obtained. And Effectiveness factor were used to evaluate the discrimination capacity of each parameter. From the effectiveness factor, RAW-P4/RAW-P7/WT2-NNL/WT2-EE/WT1-P1 showed high ranking. Finally, these parameters were selected as the feature parameters of intelligent fault diagnostics for rotor.

Dynamic Characteristic Analyses of a Bearingless Helicopter Rotor Systems (무베어링 헬리콥터 로터 시스템의 동특성 해석)

  • Kee, Young-Jung;Yun, Chul-Yong;Kim, Seung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.52-56
    • /
    • 2011
  • Recently, KARI(Korea Aerospace Research Institute) has been developing a modern 11.5m diameter four bladed bearingless main rotor system, and this rotor system can be used for 7,000lb class helicopter. Flexbeam and torque tube can be considered as the key structural components, and large elastic twist of flexbeam induced by pitch control motion of torque tube can influence the nonlinear aeroelastic behavior. In this paper, the dynamic characteristic analysis results of bearingless rotor system were presented. In order to construct a input model and validate the analysis procedures, calculated results using the comprehensive helicopter analysis program CAMRAD II were compared with the measured natural frequencies and lag damping data from small-scale wind tunnel test. Next, the analysis model was extended to a full-scale model, and the dynamic analysis results were presented.

  • PDF

Dynamic Characteristic Analyses of a Bearingless Helicopter Rotor System (무베어링 헬리콥터 로터 시스템의 동특성 해석)

  • Kee, Young-Jung;Yun, Chul-Yong;Kim, Doeg-Kwan;Kim, Seung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.187-192
    • /
    • 2012
  • Recently, KARI(Korea Aerospace Research Institute) has been developing a modern 11.5 m diameter four bladed bearingless main rotor system, and this rotor system can be used for 7,000 lb class helicopter. Flexbeam and torque tube can be considered as key structural components, and large elastic twist of flexbeam induced by pitch control motion of torque tube can influence the nonlinear aeroelastic behavior. In this paper, the dynamic characteristic analysis results of bearingless rotor system were presented. In order to construct a input model and validate the analysis procedures, calculated results using the comprehensive helicopter analysis program CAMRAD II were compared with the measured natural frequencies and lag damping data from small-scale wind tunnel test. Next, the analysis model was extended to a full-scale model, and the dynamic analysis results were presented.

Design and Development of Rectangular Type High Torque Hybrid Step Motor (사각 고토오크 하이브리드 스텝모터의 설계 및 개발)

  • Choi, Myung-Jong;Chung, Tae-Kyung
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.129-131
    • /
    • 1994
  • Rectangular type hybrid step motor is designed to generate thirty percents higher torque than existing step motors. The torque for the motor is generated by the electromagnetic force at the air gap between the stator and rotor. The generating torque is proportioned to the rotor volume, i. e. rotor diameter. The main idea in this study is that the diameter of rotor is increased to generate more torque for the same overall motor size. This motors are manufactured by varying the shape of the teeth width of the stator and rotor. The optimum shape of the teeth is selected from the standpoint as smaller step angular accuracy.

  • PDF

Design, Control, and Implementation of Small Quad-Rotor System Under Practical Limitation of Cost Effectiveness

  • Jeong, Seungho;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.324-335
    • /
    • 2013
  • This article presents the design, control, and implementation of a small quad-rotor system under the practical limitation of being cost effective for private use, such as in the cases of control education or hobbies involving radio-controlled systems. Several practical problems associated with implementing a small quad-rotor system had to be taken into account to satisfy this cost constraint. First, the size was reduced to attain better maneuverability. Second, the main control hardware was limited to an 8-bit processor such as an AVR to reduce cost. Third, the algorithms related to the control and sensing tasks were optimized to be within the computational capabilities of the available processor within one sampling time. A small quad-rotor system was ultimately implemented after satisfying all of the above practical limitations. Experimental studies were conducted to confirm the control performance and the operational abilities of the system.

Adaptive Control for Speed of Wound Rotor Induction Motor With Slip Energy Recovery

  • Tunyasrirut, Satean;Kanchanatep, Attapol;Ngamwiwit, Jongkol;Furuya, Tadayoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.419-422
    • /
    • 1998
  • This paper presents how to design speed control of wound rotor induction motors with slip energy recovery. The speed is limited at some range of sub-synchronous speed of the rotating magnetic field. The problem with speed control by adjusting resistance value in the rotor circuit reduces the efficiency of power, because of the slip energy is lost when it passes through the rotor resistance. The control system is designed to maintain efficiency of motor, where it recovers loss energy by returning it to the system to improve the efficiency. A new PI control method of adaptive control [1],[13]is applied for the system with cascade type PI controller on the main loop to keep the speed constant and the internal loop to adjust the rotor appropriated current of the load provides the good transient response without overshoot.

  • PDF