• Title/Summary/Keyword: Main Housing Reinforcement

Search Result 5, Processing Time 0.02 seconds

Seismic Performance of Special Shear Wall with the Different Hoop Reinforcement Detail and Spacing in the Boundary Element (경계요소 횡보강근의 상세와 배근간격에 따른 특수전단벽의 내진성능)

  • Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.6 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • This paper presents experimental results on detailing of boundary element transverse reinforcement, proposed to alleviate placement detailing of special shear wall experiencing difficulty in construction at the sites due to recently reinforced seismic regulations, according to the type and placement interval of transverse reinforcement. As a result of experiment, crack and destruction aspects of SSWR series specimen that employed the proposed detailing of transverse reinforcement showed similar trend as SSW series specimen that used closed hoop. Predicted maximum strength values were exceeded. Also as a result of comparing energy dissipation ability, SSWR2 specimen that follows alleviated placement detailing was found to have similar seismic performance as special shear wall SSW2 specimen based on the existing design standard. As it satisfies the deformation angle condition of 1.5% provided in the design standard, SSWR2 can be used as the main lateral force resistance element in structures.

The Significance of Participants' Role in Local Community Level for Making Livable City ("살고 싶은 도시만들기"를 위한 지역사회의 역할)

  • Jin, Mi-Yun;Yee, Yu-Mi;Jo, In-Sook
    • Journal of the Korean housing association
    • /
    • v.18 no.1
    • /
    • pp.103-112
    • /
    • 2007
  • This paper attempts to solve the problems what is Making Livable City for and how to implement their scheme in the future. The purpose of this article is two. First, it is a examination of the background and main concept of Making Liviable City that was proposed last year end and compare with similar urban development strategies. Second, it is proposed direction and scheme that is workable to implement in local community level especially, throuth the participants' role for Making Livable City. It is concluded that is needed to develop indicator for Livable City, reinforcement of administrative capacity, formation of political mood for paticipation, and enactment of Act of Making Livable City. Impications are discussed for significance of mutual cooperative endeavour and partnerships between participants in decision-making.

An Experimental Study on Motor Noise Reduction of Electric Power Steering (전동식 파워스티어링 모터소음 저감을 위한 실험적 연구)

  • You, C.J.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.83-87
    • /
    • 2008
  • EPS(Electric Power Steering) system, which has replaced the hydraulic steering system(HPS or HPAS) in many passenger cars recently, have many merits such as low energy consumption, easy mounting, light weight and improvement of environmental pollution. However, EPS system has the problem of motor noise when motor is rotated, which can make a driver feel uncomfortable. There are many techniques to solve those problems, but they are not clear. It is necessary to evaluate the mechanical noise in steering systems, because an EPS has vibration sources such as at the motor gear reducer, manual gears and intermediate joints. In this paper, reduction technique of EPS motor noise is introduced.

  • PDF

Nonlinear intelligent control systems subjected to earthquakes by fuzzy tracking theory

  • Z.Y. Chen;Y.M. Meng;Ruei-Yuan Wang;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.33 no.4
    • /
    • pp.291-300
    • /
    • 2024
  • Uncertainty of the model, system delay and drive dynamics can be considered as normal uncertainties, and the main source of uncertainty in the seismic control system is related to the nature of the simulated seismic error. In this case, optimizing the management strategy for one particular seismic record will not yield the best results for another. In this article, we propose a framework for online management of active structural management systems with seismic uncertainty. For this purpose, the concept of reinforcement learning is used for online optimization of active crowd management software. The controller consists of a differential controller, an unplanned gain ratio, the gain of which is enhanced using an online reinforcement learning algorithm. In addition, the proposed controller includes a dynamic status forecaster to solve the delay problem. To evaluate the performance of the proposed controllers, thousands of ground motion data sets were processed and grouped according to their spectrum using fuzzy clustering techniques with spatial hazard estimation. Finally, the controller is implemented in a laboratory scale configuration and its operation is simulated on a vibration table using cluster location and some actual seismic data. The test results show that the proposed controller effectively withstands strong seismic interference with delay. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage. Simulation results is believed to achieved in the near future by the ongoing development of AI and control theory.

Development of a Temporary Pole Supporting System to Protect the Plastic Greenhouses from Heavy Snow Damage (플라스틱 온실의 폭설피해 방지를 위한 가지주 장치 개발)

  • Nam, Sang-Woon
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.107-113
    • /
    • 2002
  • The pipe framed and arch shape plastic greenhouse, which is the most popular greenhouse in Korea, is relatively weak in snowdrift. Reinforcement of rigid frame or column is required to reduce the damage from heavy snow in this type. But additional rigid frames or columns decrease light transmissivity or workability, and increase construction cost. So it is desirable to prepare some temporary poles and to install them when the warning of heavy snow is announced. This study was carried out to develop the temporary pole supporting system using galvanized steel pipes for plastic housing and to evaluate the safe snow load on a temporary pole. A pipe connector, which is inserted in the top of pipe used in the temporary pole and supports the center purline, was designed and manufactured to be able to carry the upper loads safely. And a bearing plate was safely designed and manufactured in order to carry the loads acting on it to the ground. When temporary poles of ${\phi}$ 25 pipe are installed at 2.4m interval, it shows that the single span plastic greenhouses with 5~7 m width are able to support the additional snow depth of 13.9~25.3 cm beyond the snow load supported by main frame.