• Title/Summary/Keyword: Main Design Processing

Search Result 485, Processing Time 0.024 seconds

Effect of Alternating Magnetic Field on Ion Activation in Low Temperature Polycrystalline Silicon Technology

  • Hwang, Jin Ha;Lim, Tae Hyung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.1
    • /
    • pp.35-39
    • /
    • 2004
  • Statistical design of experiments was successfully employed to investigate the effect of alternating magnetic field on activation of polycrystalline Si (p-Si) doped as n-type using $\textrm{PH}_3$, by full factorial design of three factors with two levels. In this design, the input variables are graphite size, alternating current, and activation time. The output parameter, sheet resistance, is analyzed in terms of the primary effects and multi-factor interactions. Notably, the three-factor interaction is calculated to be a dominant interaction. The interaction between graphite size and activation time and the main effect of current are important effects compared to the other variables and relevant interactions. Alternating magnetic flux activation is proved a significantly beneficial processing technique.

  • PDF

A Study on the Computer-Aided Design System of Axisymmetric Deep Drawing Process(II) (축대칭 디프 드로잉 제품의 공정설계 시스템에 관한 연구(II))

  • Park, S.B.;Choi, Y.;Kim, B.M.;Choi, J.C.;Lee, J.
    • Transactions of Materials Processing
    • /
    • v.5 no.1
    • /
    • pp.61-71
    • /
    • 1996
  • A computer-aided process design system for axisymmetric deep drawing products has been developed. An approach to the system is based on the knowledge based system. Knowledges for the system are formulated from the plasticity theory handbooks experimental results and empirical knowhow of the field experts. the system is composed of four main modules such as geometrical design test & rectification and user modification. The input to the system is final sheet-metal object geometry and the output from the system is process sequence with intermedi-ate objects geometries and process parameters, such as drawing load blank holding force clearance cup-drawing coefficient.

  • PDF

The design and fabrication of 81.25 MHz RFQ for Low Energy Accelerator Facility

  • Zhao, Bo;Chen, Shuping;Zhu, Tieming;Wang, Fengfeng;Jin, Xiaofeng;Li, Chenxing;Ma, Wei;Zhang, Bin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.556-560
    • /
    • 2019
  • To provide high shunt impendence with low power losses, an 81.25 MHz continuous wave (CW) radio frequency quadrupole (RFQ) accelerator has been designed and machined as parts of the Low Energy Accelerator Facility (LEAF). In this paper, the mechanical structure and the main processing technology of the RFQ cavities are described according to the physical and geometric parameters requirements of the RFQ. The fabrication of the RFQ has been completed and the test results agree well with the design requirements. The RFQ accelerator will work in Institute of Modern Physics, Chinese Academy of Sciences in 2018.

Creating Knowledge from Construction Documents Using Text Mining

  • Shin, Yoonjung;Chi, Seokho
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.37-38
    • /
    • 2015
  • A number of documents containing important and useful knowledge have been generated over time in the construction industry. Such text-based knowledge plays an important role in the construction industry for decision-making and business strategy development by being used as best practice for upcoming projects, delivering lessons learned for better risk management and project control. Thus, practical and usable knowledge creation from construction documents is necessary to improve business efficiency. This study proposes a knowledge creating system from construction documents using text mining and the design comprises three main steps - text mining preprocessing, weight calculation of each term, and visualization. A system prototype was developed as a pilot study of the system design. This study is significant because it validates a knowledge creating system design based on text mining and visualization functionality through the developed system prototype. Automated visualization was found to significantly reduce unnecessary time consumption and energy for processing existing data and reading a range of documents to get to their core, and helped the system to provide an insight into the construction industry.

  • PDF

Design and Implementation of a Main-memory Storage System for Real-time Retrievals (실시간 검색을 위한 다중 사용자용 주기억장치 자료저장 시스템 개발)

  • Kwon, Oh-Su;Hong, Dong-Kweon
    • The KIPS Transactions:PartD
    • /
    • v.10D no.2
    • /
    • pp.187-194
    • /
    • 2003
  • Main Memory storage system can increase the performance of the system by assigning enough slack time to real-time transactions. Due to its high response time of main memory devices, main memory resident data management systems have been used for location management of personal mobile clients to cope with urgent location related operations. In this paper we have developed a multi-threaded main memory storage system as a core component of real-time retrieval system to handle a huge amount of readers and writers of main memory resident data. The storage system is implemented as an embedded component which is working with the help of a disk resident database system. It uses multi-threaded executions and utilizes latches for its concurrency control rather than complex locking method. It only saves most recent data on main memory and data synchronization is done only when disk resident database asks for update transactions. The system controls the number of read threads and update threads to guarantee the minimum requirements of real-time retrievals.

Artificial Intelligence(AI) Fundamental Education Design for Non-major Humanities (비전공자 인문계열을 위한 인공지능(AI) 보편적 교육 설계)

  • Baek, Su-Jin;Shin, Yoon-Hee
    • Journal of Digital Convergence
    • /
    • v.19 no.5
    • /
    • pp.285-293
    • /
    • 2021
  • With the advent of the 4th Industrial Revolution, AI utilization capabilities are being emphasized in various industries, but AI education design and curriculum research as universal education is currently lacking. This study offers a design for universal AI education to further cultivate its use in universities. For the AI basic education design, a questionnaire was conducted for experts three times, and the reliability of the derived design contents was verified by reflecting the results. As a result, the main competencies for cultivating AI literacy were data literacy, AI understanding and utilization, and the main detailed areas derived were data structure understanding and processing, visualization, word cloud, public data utilization, and machine learning concept understanding and utilization. The educational design content derived through this study is expected to increase the value of competency-centered AI universal education in the future.

Design of ALTIBASE(TM) Storage Manager for High Performance and High Availability (고성능 고가용성을 위한 ALTIBASE(TM) 자료저장 관리기의 설계)

  • Jeong, Gwang-Cheol;Lee, Gyu-Ung;Bae, Hae-Yeong
    • The KIPS Transactions:PartD
    • /
    • v.10D no.6
    • /
    • pp.949-960
    • /
    • 2003
  • Main memory database systems use the different implementation techniques to sturucture and organize the user dta and system catalogs, since traditional database systems are optimized for the characteristics of disk storage environment. We present, in this paper, the design considerations for our main memory database system $ALTIBASE^{TM}$ that is currently applied to the time-critical applications. We focus on the design issues of storage manager in $ALTIBASE^{TM}$. The major components are introduced, and features and characteristics of transaction management and recovery method are described. We also present the database replication mechanism and its conflict resolution mechanism for high availability and performance. In order to evaluate our transaction performance, we show various experimental reports as measured by the TPS.

A Study on Voltammetry System Design for Realizing High Sensitivity Nano-Labeled Sensor of Detecting Heavy Metals (중금속 검출용 고감도 나노표지센서 구현을 위한 볼타메트리 시스템 설계 연구)

  • Kim, Ju-Myoung;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.297-303
    • /
    • 2012
  • In this study, voltammetry system for realizing high sensitivity nano-labeled sensor of detecting heavy metals was designed, and optimal system operating conditions were determined. High precision digital to analog converter (DAC) circuit was designed to control applied unit voltage at working electrode and analog to digital converter (ADC) circuit was designed to measure the current range of $0.1{\sim}1000{\mu}A$ at counter electrode. Main control unit (MCU) circuit for controlling voltammetry system with 150 MHz clock speed, main memory circuit for the mathematical operation processing of the measured current value and independent power circuit for analog/digital circuit parts to reduce various noise were designed. From result of voltammetry system operation, oxidation current peaks which are proportional to the concentrations of Zn, Cd and Pb ions were found at each oxidation potential with high precision.

Parametric Study of Steel-Al Alloy SPR Joint Process via Finite Element Analysis (유한요소해석을 통한 Steel-Al합금 SPR 접합공정 주요인자 분석)

  • Kim, S.H.;Park, N.;Song, J.H.;Noh, W.;Park, K.Y.;Bae, G.
    • Transactions of Materials Processing
    • /
    • v.29 no.6
    • /
    • pp.301-306
    • /
    • 2020
  • The parametric study of Steel-Al alloy SPR joint process is based on the FE simulation described by Kim et al. [10], which was validated by comparing experimental and simulation results for two kinds of steel-Al alloy combinations according to the lower sheet thickness. To analyze the SPR joint process, the friction coefficient, the lower sheet thickness, and the rivet length were selected as the main parameters. Based on FE simulations, the effect of main parameters was investigated by measuring the interlock and the bottom thickness at the cross-sectional shape of the SPR joint. The results of simulation facilitate the design of SPR joint process in various metal combinations.

Processing Scrambled Wh-Constructions in Head-Final Languages: Dependency Resolution and Feature Checking

  • Hahn, Hye-ryeong;Hong, Seungjin
    • Language and Information
    • /
    • v.18 no.2
    • /
    • pp.59-79
    • /
    • 2014
  • This paper aims at exploring the processing mechanism of filler-gap dependency resolution and feature checking in Korean wh-constructions. Based on their findings on Japanese sentence processing, Aoshima et al. (2004) have argued that the parser posits a gap in the embedded clause in head-final languages, unlike in head-initial languages, where the parser posits a gap in the matrix clause. In order to verify their findings in the Korean context, and to further explore the mechanisms involved in processing Korean wh-constructions, the present study replicated the study done by Aoshima et al., with some modifications of problematic areas in their original design. Sixty-four Korean native speakers were presented Korean sentences containing a wh-phrase in four conditions, with word order and complementizer type as the two main factors. The participants read sentences segment-by-segment, and the reading times at each segment were measured. The reading time analysis showed that there was no such slowdown at the embedded verb in the scrambled conditions as observed in Aoshima et al. Instead, there was a clear indication of the wh-feature checking process in terms of a major slowdown at the relevant region.

  • PDF