• Title/Summary/Keyword: Maier effective volume method

Search Result 1, Processing Time 0.013 seconds

Enhancing photoluminescence of Au - TiO2 nanoparticles using Drude model

  • Dang, Diem Thi-Xuan;Vu, Thi Hanh Thu
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.288-296
    • /
    • 2017
  • The enhancement of photoluminescence of Au-$TiO_2$ nanoparticles by surface plasmon resonance has been studied extensively by experiment in recent years. For the purpose of optimizing the photoluminescence property of Au-$TiO_2$ nanoparticles, the manufacturing parameters related to the Au nanoparticles and $TiO_2$ nanoparticles need to be considered. In this paper, Drude model and Maier's effective volume method are used to analyze the variation of the metal nanoparticle radius, separation between metal nanoparticle and dielectric molecule, and total absorption cross-section with original radiative efficiency on the photoluminescence property of Au-$TiO_2$ nanoparticles. The results show that to obtain the optimized enhancement factor for photoluminescence process, the size of Au nanoparticle is about 13 - 20 nm, the separation between Au nanoparticle and $TiO_2$ molecule is about 5 -15 nm, the total absorption cross-section of $TiO_2$ molecules is about $1-100nm^2$ and the original radiative efficiency of $TiO_2$ molecule is weak about 0.001- 0.1. With these fabrication parameters, the photoluminescence property of Au-$TiO_2$ nanoparticles can be enhanced several thousand times compared to traditional $TiO_2$ nanoparticles.