• 제목/요약/키워드: Magnetostrictive material

검색결과 65건 처리시간 0.028초

자기 변형 작동기를 이용한 진동 절연 시스템 (The vibration isolating system using a magnetostrictive actuator)

  • 정학근;박기환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.276-279
    • /
    • 1997
  • When a magnetostrictive material is exposed to a magnetic field, its geometry changes due to a magnetostrictive effect. The magnetostriction is analogous to the piezoeletricity. The displacement of the magnetostrictive material is proportional to the applied current while that of the piezoelectric material is proportional to the voltage. A magnetostrictive material generates large displacement and higher compressive force compared with a piezoeletric material. These advantages provide a good performance of a vibration isolation of a platform. In this work, it is applied to a driving actuator for vibration isolation of a platform. The properties of a magnetostrictive material are investigated in terms of hysteresis and displacement vs. applied current for a various preload. Modeling of the displacement of the vibration isolating actuator is performed as it behaves as a flow source. A sliding mode controller is designed to demonstrate the ability of the magnetostrictive actuator to reduce the vibration at the platform. The effectiveness of the proposed scheme is demonstrated through experimental works. The experimental results of the vibration of the platform axe presented in terms of time response and frequency response.

  • PDF

Effect of Permeability and Piezomagnetic Coefficient on Magnetostrictive/Piezoelectric Laminate Composite

  • Wu, Zhiyi;Wen, Yumei;Li, Ping;Yang, Jin;Dai, Xianzhi
    • Journal of Magnetics
    • /
    • 제16권2호
    • /
    • pp.157-160
    • /
    • 2011
  • The magnetostrictive material is magnetized in magnetic field and produces a nonuniform demagnetizing field inside and outside it. The demagnetization is decided by the permeability of magnetostrictive material and its size. The magnetoelectric performances are determined by the synthesis of the applied and demagnetizing fields. An analytical model is proposed to predict the magnetoelectric voltage coefficient (MEVC) of magnetostrictive/piezoelectric laminate composite using equivalent circuit method, in which the nonuniform demagnetizing field is taken into account. The theoretical and experimental results indicate that the MEVC is positively connected with the permeability and the piezomagnetic coefficient of magnetostrictive material. To obtain the maximum MEVC, both the permeability and the piezomagnetic coefficient of magnetostrictive material should be taken into account in selecting the suitable magnetostrictive material.

자왜 재료의 탄성파 속도에 관한 연구 (A Study on the Elastic Wave Velocity of Magnetostrictive Materials)

  • 강국진;노용래
    • 한국음향학회지
    • /
    • 제20권4호
    • /
    • pp.54-61
    • /
    • 2001
  • 자왜 재료는 비선형 자기-탄성 특성을 갖는다고 알려져 있다. 그러나 비선형 특성을 표현하는 자왜 재료의 비선형 구조 방정식을 4차 텐서를 이용하여 유도하였고, 준선형 (quasi-linear)화시킨 압자구조방정식을 이용하여 자왜 재료 내의 파동 방정식을 유도하였다. 유도된 식을 바탕으로 자왜 재료에서 평면파가 자계 방향을 따라 전파될 때의 탄성파 속도를 구하였다. 나아가 자왜 재료 중에서 가장 널리 사용되고 있는 Terfenol-D의 탄성파 속도를 측정하여 본 연구에서 유도한 자왜 재료 비선형 구조 방정식의 타당성을 검증하였다.

  • PDF

압축 공기 냉각을 이용한 자기 변형 구동기의 열해석에 관한 연구 (A Study on Thermal Analysis for Magnetostrictive Actuator Using Compressed Air Cooling)

  • 곽용길;;황진동;김선호;안중환
    • 한국생산제조학회지
    • /
    • 제18권4호
    • /
    • pp.388-394
    • /
    • 2009
  • Precision positioning system with magnetostrictive actuator(MA) has widely used in manufacturing devices to control the positioning accuracy to meet the high load and stroke requirements. It has many advantage in comparison with piezoelectic actuator; high force, high strain, high efficient etc. But, the performance of Terfenol-D, the commercially available magnetostrictive material, is highly dependent on the prestress, magnetic field intensity and temperature. Therefore, thermal strain of magnetostrictive material obstructs precision position control of magnetostrictive actuator, magnetostrictive actuator is need of cooling system. In this paper, cooling system using compressed cold air is developed and proper temperature and velocity of compressed cold air is studied by thermal analysis according to applied current.

  • PDF

Measurement of Frequency Response of Giant Magnetostrictive Material by Use of M-transform

  • Harada, Hiroshi;Kashiwagi, Hiroshi;Kndo, Koshi;Yamaguchi, Teruo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.497-501
    • /
    • 2003
  • In this paper, impulse response of giant magnetostrictive material (GMM) is identified by using M-transform. First, the displacement of GMM was measured by using the dual frequency laser interferometer. The noise included in the measured signal was removed by using M-transform. The impulse response of the GMM was identified from the input current of the driving coil and the displacement.

  • PDF

유한 요소 해석을 통한 자기변형 구동기 자기 회로 설계 (The design of magnetic circuit of magnetostrictive actuator using finite element method)

  • 이석호;박영우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.548-551
    • /
    • 2004
  • Magnetostrictive actuators have seen increasing use in fine positioning system because it has many advantages such as friction free, resolution of ${\mu}{\textrm}{m}$ or nm scale, and powerful output force. Usually, the magnetic circuit of magnetostrictive actuator has components which are flux return path, coil, and magnetostrictive material. It is classified in two types according to existence of the permanent magnet. The magnetic circuit having optimal performances transfer magnetic field which is obtained by providing input current at coil without energy loss. This paper described mathematical model of magnetic circuit for getting design variables. The modeling equation is obtained from the relations between flux and reluctance of the magnetic equivalent circuit. Also, finite element analysis has been used to study the performance of magnetic circuit according to change of design variables such as existence and shape of the permanent magnet, flux return path etc. The modification of dimensions enables us to optimize magnetic circuit.

  • PDF

Torsional analysis of heterogeneous magnetic circular cylinder

  • Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • 제17권4호
    • /
    • pp.535-548
    • /
    • 2014
  • In this paper, the exact closed-form solutions for torsional analysis of heterogeneous magnetostrictive circular cylinder are derived. The cylinder is subjected to the action of a magnetic field produced by a constant longitudinal current density. It is also acted upon by a particular kind of shearing stress at its upper base. The rigidity of the cylinder is graded through its axial direction from one material at the lower base to another material at the upper base. The distributions of circumferential displacement and shear stresses are presented through the radial and axial directions of the cylinder. The influence of the magnetostrictive parameter is discussed. The effects of additional parameters are investigated.