• Title/Summary/Keyword: Magnetostrictive Film

Search Result 15, Processing Time 0.025 seconds

Influence of Stain on the High Frequency Impedance of Highly Magnetostrictive Films (고자왜막의 고주파임피던스에 미치는 스트레인의 영향)

  • ;M. Inoue;K. I, Arai
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.1
    • /
    • pp.47-51
    • /
    • 2000
  • To make a practical application of a micro-strain sensors with ultrahigh sensitivity, a strain on electrical properties of micro-patterned amorphous (Fe\ulcornerco\ulcorner)\ulcornerSi\ulcornerB\ulcorner films had influenced on the impedance over frequency range from 1 MHz to 1 GHz. Reflecting excellent magnetomachanical couping properties of films, high frequency impedance was subject to change sensitively by a strain : a change in impe-dance of 39% was observed at 200 MHz applied a strain of 224$\times$10\ulcorner. To determine a optimum shape of micro-patterned films, film impedance was analyzed by virtue of its constitutive components of resis-tance and reactance. Result was shown that reduction of the resistance term(hence increase of resultant reactance term) of impedance is more effective for enhancing the strain sensitivity of films at relatively low frequency range.

  • PDF

Study on Angular Rate Sensor using Sol-Gel PZT thin film (Sol-gel 압전체 박막을 이용한 각속도 센서에 대한 연구)

  • Lee, S. H.;R. Meada;M. Esashi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.34-34
    • /
    • 2003
  • Piezoelectric or magnetostrictive materials, known as smart materials, have been researched widely for sensors or actuators in micro system technology. In our research, thick sol-gel lead zirconate titanate(Pb(Zr$\sub$1-x/Ti$\sub$x/)O$_3$) films were fabricated and their characteristics were investigated f3r angular rate sensor applications. The thickness of the PZT films is 1.5${\mu}$m, which is required by a vibration angular rate sensor for a good actuation and sensing. The remnant polarization of the PZT flms is 12.0 ${\mu}$C/$\textrm{cm}^2$. The electromechanical constants of PZT thin film showed the value of susceptance(B) of 4800${\mu}$ s at capacitance of 790pF. The PZT films were applied to the vibration angular rate sensor structure and the vibration of 1.78 ${\mu}$m in amplitude at the resonant frequency of 35.8㎑ was obtained by driving voltage of 5V$\sub$p-p/ of bulk piezoelectric materials with out of phase signal through voltage and inverting amplifier.

  • PDF

High Sensitive Strain Detection of FeCoSiB Amorphous Films (아몰퍼스 FeCoSiB 박막의 고감도 스트레인 검출특성)

  • Shin, Kwang-Ho;Arai, Ken-Ichi;SaGong, Geon
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.22-27
    • /
    • 2000
  • Amorphous FeCoSiB films with high saturation magnetostriction and excellent soft magnetic properties have been studied to evaluate their strain sensitivity. Films were subjected to a strain by bending of their substrates, which caused a change in the magnetic anisotropy of films via magnetoelastic coupling. Films were exhibited a figure of merit $F=({\Delta}{\mu}/{\mu})/{\varepsilon}$ (change in film permeability $\mu$ per unit strain $\varepsilon$) of $1.2{\times}10^5$, which is comparable with that of amorphous ribbons. To make a study of application of magnetostrictive films as strain sensor elements, we have prepared a micro-patterned film by means of the photolithography and ion milling processes. Impedance change in the patterned films, when strain was applied, was measured over the frequency range from 1 MHz to 1 GHz. Reflecting a large value of figure of merit F, a variation of 46% impedance of films was shown at 100 MHz frequency when a strain of $300{\times}10^{-6}$ was applied.

  • PDF

Fabrication process for micro magnetostrictive sensor using micromachining technique (Micromachining을 이용한 초소형 자왜 센서 제작공정 연구)

  • 김경석;고중규;임승택;박성영;이승윤;안진호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.1
    • /
    • pp.81-89
    • /
    • 1999
  • The fabrication process for miniaturizing the Electronic Article Surveillance (EAS) sensor was studied using micromachining technique. Two types of sensor structure, free standing membrane type and diving beard type, were proposed and researched for establishing the fabrication process. The membrane type structure was easy to change the sensor shape but had the limitation for miniaturizing, because the size of the sensor depends on the silicon substrate thickness. The diving board type structure has the advantage of miniaturization and of free motion. Since the elastic modulus is not trio high, SiN film is expected to be adequate for the supporting membrane of magnetic sensor. The selectivity of $H_2O_2$for sputtered W with respect to Fe-B-Si, which was studded for magnetic sensor materials, was high enough to be removed after using as a protection layer. Therefore, the diving board type process using the silicon nitride film for the supporter of the sensor material and the sputtered W for protection layer is expected to be useful fur miniaturizing the Electronic Article Surveillance (EAS) sensor.

  • PDF