• 제목/요약/키워드: Magneto-elastic vibrations

검색결과 3건 처리시간 0.02초

Modelling of Magneto-Elastic Phenomena in Inductive Dynamic Drive

  • Jankowski, Piotr
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1073-1081
    • /
    • 2017
  • Inductive dynamic drives (IDD) are ultra rapid actuators where the moving part (disc) is subjected to impulse force. This paper presents the second model of inductive dynamic drive - a mechanical model where analytic- numerical approach was applied. The magnetic pressure, which was determined on the basis of the results obtained in the electrodynamic model, becomes the input data for mechanical model. Research with application of the mechanical model is necessary in order to determine the proper disc oscillation frequency and to obtain the stress state control for drive elements to be designed. Also, the selection of drive parameters to keep the disc deformation insignificant (while oscillating) is a condition under which these models do not need to be coupled together.

Analyzing exact nonlinear forced vibrations of two-phase magneto-electro-elastic nanobeams under an elliptic-type force

  • Mirjavadi, Seyed Sajad;Nikookar, Mohammad;Mollaee, Saeed;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, A.M.S.
    • Advances in nano research
    • /
    • 제9권1호
    • /
    • pp.47-58
    • /
    • 2020
  • The present paper deals with analyzing nonlinear forced vibrational behaviors of nonlocal multi-phase piezo-magnetic beam rested on elastic substrate and subjected to an excitation of elliptic type. The applied elliptic force may be presented as a Fourier series expansion of Jacobi elliptic functions. The considered multi-phase smart material is based on a composition of piezoelectric and magnetic constituents with desirable percentages. Additionally, the equilibrium equations of nanobeam with piezo-magnetic properties are derived utilizing Hamilton's principle and von-Kármán geometric nonlinearity. Then, an exact solution based on Jacobi elliptic functions has been provided to obtain nonlinear vibrational frequencies. It is found that nonlinear vibrational behaviors of the nanobeam are dependent on the magnitudes of induced electrical voltages, magnetic field intensity, elliptic modulus, force magnitude and elastic substrate parameters.

A feasibility study on smart base isolation systems using magneto-rheological elastomers

  • Koo, Jeong-Hoi;Jang, Dong-Doo;Usman, Muhammad;Jung, Hyung-Jo
    • Structural Engineering and Mechanics
    • /
    • 제32권6호
    • /
    • pp.755-770
    • /
    • 2009
  • This study proposes a new smart base isolation system that employs Magneto-Rheological Elastomers (MREs), a class of smart materials whose elastic modulus or stiffness can be varied depending on the magnitude of an applied magnetic field. It also evaluates the dynamic performance of the MRE-based isolation system in reducing vibrations in structures subject to various seismic excitations. As controllable stiffness elements, MREs can increase the dynamic control bandwidth of the isolation system, improving its vibration reduction capability. To study the effectiveness of the MRE-based isolation system, this paper compares its dynamic performance in reducing vibration responses of a base-isolated single-story structure (i.e., 2DOF) with that of a conventional base-isolation system. Moreover, two control algorithms (linear quadratic regulator (LQR)-based control and state-switched control) are considered for regulating the stiffness of MREs. The simulation results show that the MRE-based isolation system outperformed the conventional system in suppressing the maximum base drift, acceleration, and displacement of the structure.