• 제목/요약/키워드: Magneto-Rheological fluid

검색결과 133건 처리시간 0.029초

주파수 성형 LQ제어기를 이용한 반능동식 자기유변유체 현가 시스템 (Semiactive MR Fluid Suspension System Using Frequency Shaped LQ Control)

  • 김기덕;전도영
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2274-2282
    • /
    • 2000
  • An MR(Magneto-Rheological) fluid damper is designed and applied to the semi-active suspension system of a 1/4 car model. The damping constant of the MR damper changes according to input current and the time delay of the damper is included in the system dynamics. The passive method, LQ control and Frequency shaped LQ control are compared in experiments. The advantage of the proposed frequency shaped LQ control is that the ride comfort improves in frequency range from 4 to 8Hz where human body is most sensitive and the driving safety improves around the resonance frequency of unsprung mass, 11Hz. The experiments using a 1/4 car model show the effectiveness of the algorithm.

Characterizing nonlinear oscillation behavior of an MRF variable rotational stiffness device

  • Yu, Yang;Li, Yancheng;Li, Jianchun;Gu, Xiaoyu
    • Smart Structures and Systems
    • /
    • 제24권3호
    • /
    • pp.303-317
    • /
    • 2019
  • Magneto-rheological fluid (MRF) rotatory dampers are normally used for controlling the constant rotation of machines and engines. In this research, such a device is proposed to act as variable stiffness device to alleviate the rotational oscillation existing in the many engineering applications, such as motor. Under such thought, the main purpose of this work is to characterize the nonlinear torque-angular displacement/angular velocity responses of an MRF based variable stiffness device in oscillatory motion. A rotational hysteresis model, consisting of a rotatory spring, a rotatory viscous damping element and an error function-based hysteresis element, is proposed, which is capable of describing the unique dynamical characteristics of this smart device. To estimate the optimal model parameters, a modified whale optimization algorithm (MWOA) is employed on the captured experimental data of torque, angular displacement and angular velocity under various excitation conditions. In MWOA, a nonlinear algorithm parameter updating mechanism is adopted to replace the traditional linear one, enhancing the global search ability initially and the local search ability at the later stage of the algorithm evolution. Additionally, the immune operation is introduced in the whale individual selection, improving the identification accuracy of solution. Finally, the dynamic testing results are used to validate the performance of the proposed model and the effectiveness of the proposed optimization algorithm.

MR유체를 이용한 유량제어 밸브 (Development of Flow Control Valve Using MR Fluid)

  • 이형돈;배형섭;이육형;박명관
    • 제어로봇시스템학회논문지
    • /
    • 제17권9호
    • /
    • pp.888-891
    • /
    • 2011
  • This paper presents development of flow control valve using MR fluid. Generally, since the apparent viscosity of MR fluids is adjusted by applying magnetic fields, the MR valves can control high level fluid power without any mechanical moving parts. In this paper, flow control valve using MR fluid on the behavior of the magnetic field influence on the numerical analysis of more accurate electromagnetic parameters were obtained, even if when magnetic field apply inside of surrounding MR fluid from electromagnet, more realistic designing way analysis of characteristic of whole magnetic field distribution is suggested by surrounding magnetic material. Also, comparison of flow rate inlet and outlet, behavior of MR fluid in experiments proposed. A new type of flow control valve using MR fluid is proposed by analysis of behavior of MR fluid in experiments.

반능동 제어를 위한 MR 유체 댐퍼의 설계 (Design of MR Fulid Dampers for Semi-Active Control)

  • 구자인
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.496-500
    • /
    • 2000
  • 대형 구조물의 진동제어를 위하여 MR 유체 댐퍼를 사용한 반능동 제어기법에 대하여 연구하였다. 기존에 많이 사용되고 있는 수동제어기법은 일단 제어장치를 설치한 후에는 구조물에 실제로 작용하고 있는 외부 하중의 현재 특성에 대해서 적절히 반응할 수 없다는 제한을 가지고 있으며, 이를 극복하기 위하여 연구되어온 능동제어기법은 구조물이 진동을 감소시키기 위하여 구조물에 직접적으로 가해지는 커다란 제어력을 요구하며, 이로 인해 경우에 따라서는 불안정한 상태가 유발될 수도 있다는 점이 단점으로 지적되고 있다. 최근에 Spencer 등은 반능동 제어기법을 제안하였는데, 이는 수동제어장치의 제어특성을 On-Line 으로 조절하는 방식으로서 제어 가능한 수동제어기법으로도 불리운다. 구조물의 진동제어에 필요한 제어력이, 특수한 제어기구에서 발생되는 인위적인 힘이 아니라, 적절한 구조부재에서 발생되는 자연적인 부재력이므로, 무엇보다 강인하고 신뢰할 수 있는 제어기법이며, 이때 제어장치의 구조적 특성을, 측정된 구조물의 응답에 맞추어 적절히 조절함으로써 다양한 외부하중에 대해 보다 효율적인 제어가 이루어질 수 있도록 한 방법이다. 반능동제어를 위한 제어기로서는 Variable Orifice Dampers, Friction Controllable Isolators, Variable Stiffness Devices, Electro-Rheological (ER) Fluid Damper, Magneto-Rheological(MR) Fluid Damper등이 제안되고 있으며, 본 논문에서는 반응속도가 빠르고, 적은 파워만을 요구하며, 커다란 제어력을 낼 수 있는 MR Damper를 사용하여 지진하중을 받는 구조물의 반능동 제어게 대하여 연구하였다. MR Damper의 특성이 비선형이므로 이에 적합한 Sliding Mode Fuzzy Control(SMFC)기법을 사용하였으며 이때 SMFC 의 최적 설계를 위하여 Genetic Algorithm을 적용하였다. 제안된 제어기법의 실제 적용성을 검증하기 위하여 기존이 제어결과와 비교 검토하였으며, 그 결과로부터 MR Damper를 사용한 반능동 제어기법이 구조물의 진동제어에 매우 효과적임을 확인할 수 있었다.

  • PDF

MR 유체와 압전스택을 이용한 능동 엔진마운트 시스템의 HILS 제어 (Control of Active Engine Mount System Featuring MR Fluid and Piezostack via HILS)

  • 이동영;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.351-356
    • /
    • 2009
  • This paper presents vibration control performance of active engine mount system installed with the magneto-rheological (MR) mount and the piezostack mount. The performance is evaluated via hardware-in-the-loop-simulation(HILS) method. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three points mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. As a second step, sliding mode controller(SMC) is synthesized to actively control the imposed vibration In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds (wide frequency range) using HILS method and presented in time and frequency domain.

  • PDF

힘 반영 장치용 소행 MR 브레이크 (A Small MR Brake for Force Feedback Devices)

  • 김승종;조창현;이종민;황요하;김문상
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.169-172
    • /
    • 2004
  • This paper proposes a new MR(magneto-rheological) brake utilizing composite modes of MR fluid. Its basic structure and design scheme are almost the same with the conventional MR brake, but for slots in a rotating disk or shell. The slots enable the proposed MR brake to use a new mode, so-called, ‘direct cutting chain mode’as well as shear mode, which results in increasing the braking force(almost 150% compared to the case without slots). Some experimental results show that the proposed MR brake provide the sufficient braking force to be adopted for small portable force feedback devices.

  • PDF

MR 유체와 압전스택을 이용한 능동 엔진마운트 시스템의 HILS 제어 (Control of Active Engine Mount System Featuring MR Fluid and Piezostack via HILS)

  • 이동영;최승복
    • 한국소음진동공학회논문집
    • /
    • 제20권2호
    • /
    • pp.122-128
    • /
    • 2010
  • This paper presents vibration control performance of active engine mount system installed with the magneto-rheological(MR) mount and the piezostack mount. The performance is evaluated via hardware-in-the-loop-simulation(HILS) method. As a first step, six degrees-of freedom dynamic model of an in-line four-cylinder engine which has three point mounting system is derived by considering the dynamic behaviors of MR mount and piezostack mount. As a second step, sliding mode controller(SMC) is synthesized to actively control the imposed vibration. In order to demonstrate the effectiveness of the proposed active engine mount, vibration control performances are evaluated under various engine operating speeds(wide frequency range) using HILS method and presented in time and frequency domain.

MR 유체와 압전 작동기를 이용한 자동차 엔진 마운트의 능동진동제어 (Active Vibration Control of Automotive Engine Mount Using MR Fluid and Piezostack)

  • 최상민;벤큐오;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.237-242
    • /
    • 2008
  • This paper presents vibration control of an active hybrid engine mount featuring magneto-rheological (MR) fluid and a piezostack actuator. On the basis of the conventional passive rubber mount, MR fluid is adopted to improve isolation performance at resonant frequencies, whereas the piezostack actuator is adopted for performance improvement at non-resonant frequencies, especially at high frequencies. Based on some particular practical requirements of engine mounts, the proposed mount is designed and manufactured. The characteristics of rubber element, piezostack actuator and MR fluid are verified for system analysis and controller synthesis. The model of the proposed mount with a supported mass (engine) is established. In this work, a sliding mode controller is synthesized for the mount system to reduce vibrations transmitted from the engine in a wide frequency range. Computer simulations are performed to evaluate the performances of the proposed active engine mount in time and frequency domains.

  • PDF

차량용 MR충격댐퍼의 동특성 해석 (Dynamic Characteristic Analysis of MR Impact Damper for Vehicle System)

  • 송현정;우다윗;최승복
    • 한국소음진동공학회논문집
    • /
    • 제16권7호
    • /
    • pp.754-761
    • /
    • 2006
  • This paper presents the dynamic characteristics of MR impact damper for vehicle collision system. Various types of mechanism have been proposed to reduce force transmitted to the vehicle chassis and finally to protect occupants from injury. In the case of head-on collision, the bumper makes main role of isolation material for collision attenuation. In this study, the proposed bumper system consists of MR impact damper and structures. The MR impact damper utilizes MR fluid which has reversible properties with applied magnetic field. The MR fluid operates under flow mode. The bellows is used for generation of fluid flow. A mathematical model of the MR impact damper is derived incorporating with Bingham model of the MR fluid. Field dependent damping force is investigated with time and frequency domain. The MR impact damper is then incorporated with vehicle crash system. The governing equation of motion of vehicle model is formulated considering occupant model. Dynamic characteristics of vehicle collision system investigated with computer simulation.

차량용 MR 충격댐퍼의 동특성 해석 (Dynamic Characteristic Analysis of MR Impact Damper for Vehicle System)

  • 송현정;우다윗;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.147-152
    • /
    • 2006
  • This paper presents the dynamic characteristics of MR impact damper for vehicle collision system. Various types of mechanism have been proposed for reduce transmitted force to vehicle chassis and finally protect occupants from injury. In the case of frontal collision, the bumper make main role of isolation material for collision attenuation. In this study, proposed bumper system composed of MR impact damper and structures. The MR impact damper is to adopted MR fluid which has reversible properties with applied magnetic field. MR fluid operates under flow mode with Bingham flow and bellows is used for generation of fluid flow. Mathematical model of MR impact damper incorporated with MR fluid is established. Field dependent damping force is investigated with time and frequency domain. The MR impact damper is then incorporated with vehicle crash system. The governing equation of motion of vehicle model is formulated considering occupant model. Dynamic characteristics of vehicle collision system investigated with computer simulation.

  • PDF