• Title/Summary/Keyword: Magneto-Optics

Search Result 25, Processing Time 0.026 seconds

Investigation of Isotope Selective Characteristics of the Strontium Magneto-optical Trap by the Fluorescence Detection

  • Ko Kwang-Hoon;Jeong Do-Young;Lim Gwon;Kim Taek-Soo;Cha Yong Ho;Cha Hyung Ki;Lim You-Kyoung
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.87-91
    • /
    • 2005
  • The strontium magneto optical trap followed by a Zeeman slower has been demonstrated. The isotope selective characteristics of the trap have been investigated. The fluorescence spectrum of the MOT was compared with those of other high resolution spectroscopic methods. The red detuned deflection beam is also considered for a more selective spectrum.

An Algorithm for the Characterization of Surface Crack by Use of Dipole Model and Magneto-Optical Non-Destructive Inspection System

  • Lee, Jin-Yi;Lyu, Sung-Ki;Nam, Young-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1072-1080
    • /
    • 2000
  • Leakage magnetic flux (LMF) is widely used for non-contact detection of cracks. The combination of optics and LMF offers advantages such as real time inspection, elimination of electrical noise, high spatial resolution, etc. This paper describes a new nondestructive evaluation method based on an original magneto-optical inspection system, which uses a magneto-optical sensor, LMF, and an improved magnetization method. The improved magnetization method has the following characteristics: high observation sensitivity, independence of the crack orientation, and precise transcription of the geometry of a complex crack. The use of vertical magnetization enables the visualization of the length and width of a crack. The inspection system provides the images of the crack, and shows a possibility for the computation of its depth.

  • PDF

Frontiers in Magneto-optics of Magnetophotonic Crystals

  • Inoue, M.;Fedyanin, A.A.;Baryshev, A.V.;Khanikaev, A.B.;Uchida, H.;Granovsky, A.B.
    • Journal of Magnetics
    • /
    • v.11 no.4
    • /
    • pp.195-207
    • /
    • 2006
  • The recently published and new results on design and fabrication of magnetophotonic crystals of different dimensionality are surveyed. Coupling of polarized light to 3D photonic crystals based on synthetic opals was studied in the case of low dielectric contrast. Transmissivity of opals was demonstrated to strongly depend on the propagation direction of light and its polarization. It was shown that in a vicinity of the frequency of a single Bragg resonance in a 3D photonic crystal the incident linearly polarized light excites inside the crystal the TE- and TM-eigen modes which passing through the crystal is influenced by Brags diffraction of electromagnetic field from different (hkl) sets of crystallographic planes. We also measured the faraday effect of opals immersed in a magneto-optically active liquid. It was shown that the behavior of the faraday rotation spectrum of the system of the opal sample and magneto-optically active liquid directly interrelates with transmittance anisotropy of the opal sample. The photonic band structure, transmittance and Faraday rotation of the light in three-dimensional magnetophotonic crystals of simple cubic and face centered cubic lattices formed from magneto-optically active spheres where studied by the layer Korringa-Kohn-Rostoker method. We found that a photonic band structure is most significantly altered by the magneto-optical activity of spheres for the high-symmetry directions where the degeneracies between TE and TM polarized modes for the corresponding non-magnetic photonic crystals exist. The significant enhancement of the Faraday rotation appears for these directions in the proximity of the band edges, because of the slowing down of the light. New approaches for one-dimensional magnetophotonic crystals fabrication optimized for the magneto-optical Faraday effect enhancement are proposed and realized. One-dimensional magnetophotonic crystals utilizing the second and the third photonic band gaps optimized for the Faraday effect enhancement have been successfully fabricated. Additionally, magnetophotonic crystals consist of a stack of ferrimagnetic Bi-substituted yttrium-iron garnet layers alternated with dielectric silicon oxide layers of the same optical thickness. High refractive index difference provides the strong spatial localization of the electromagnetic field with the wavelength corresponding to the long-wavelength edge of the photonic band gap.

Extraordinary Optical Transmission and Enhanced Magneto-optical Faraday Effect in the Cascaded Double-fishnet Structure with Periodic Rectangular Apertures

  • Lei, Chengxin;Man, Zhongsheng;Tang, Shaolong
    • Current Optics and Photonics
    • /
    • v.4 no.2
    • /
    • pp.134-140
    • /
    • 2020
  • A significant enhancement of the magneto-optical Faraday rotation and extraordinary optical transmission (EOT) in the cascaded double-fishnet (CDF) structure with periodic rectangular apertures is theoretically predicted by using the extended finite difference time domain (FDTD) method. The results demonstrate that the transmittance spectrum of the CDF structure has two EOT resonant peaks in a broad spectrum spanning visible to near-infrared wavebands, one of them coinciding with the enhanced Faraday rotation and large figure of merit (FOM) at the same wavelength. It is most important that the resonant position and intensity of the transmittance, Faraday rotation and FOM can be simply tailored by adjusting the incident wavelength, the thickness of the magnetic layer, and the offset between two metallic rectangular apertures, etc. Furthermore, the intrinsic physical mechanism of the resonance characteristics of the transmittance and Faraday rotation is thoroughly studied by investigating the electromagnetic field distributions at the location of resonance. It is shown that the transmittance resonance is mainly determined by different hybrid modes of surface plasmons (SPs) and plasmonic electromagnetically induced transparency (EIT) behavior, and the enhancement of Faraday rotation is mostly governed by the plasmonic electromagnetically induced absorption (EIA) behavior and the conversion of the transverse magnetic (TM) mode and transverse electric (TE) mode in the magnetic dielectric layer.

THIN FILM SENSORS FOR AUTOMOBILE

  • Taga, Yasunori
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.459-466
    • /
    • 1996
  • A great amount of effort has been devoted to the constant improvement of such basic performance as dirvability, safety and enviromental protection. As a result, the total combination of various technologies has made it possible to produce safer and more comfortable automobiles. Among these technologies, plasma and thin film techniques are mainly cocerned with sensors, optics, electronics and surface modification. This paper first describes a concept of thin film processing in materials synthesis for sensors based on particle-surface interaction during deposition to provide a long life sensor applicable to sutomobiles. Some examples of parctical application of thin films to sensors are then given. These include(1) a thin films strain gauge for gravity sensors, (2) a giant magneto resistance film for speen sensors, and (3) a Magneto-impedance sensors fordetection of low magnetic field. Further progress of sophisticated thin film technology must be considered in detail to explore advanced thin film materials science and to ensure the field reliability of future sensor devices for automobile.

  • PDF

Magneto-optical trap of slowed sodium atoms by using a Zeeman slower and the characteristics of trapped atoms (Zeeman 감속기를 사용하여 감속된 원자의 포획과 포획된 원자의 특성)

  • 고광훈;정도영;한재민;이종민
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.5
    • /
    • pp.347-351
    • /
    • 2001
  • The neutral sodium atoms have been slowed down to the trap depth by using a Zeeman slower and trapped by the magneto-optical method. The density and the temperature of the trapped atoms are measured, and the frequency region where the trap is available is represented. We controlled the flux of slowed atoms by varying the slowing beam intensity, and we measured the increasing and decreasing rate of trapped atoms. We show that the difference between the increasing and decreasing rate of trapped atoms result from the loss proportional to $N_2$.

  • PDF

Design of a Non-Invasive Blood Glucose Sensor Using a Magneto-Resonance Absorption Method (자기공명흡수법에 의한 무혈혈당측정기의 디자인)

  • Kim Dong-Kyun;Won Jong-Hwa;Potapov Sergey N.;Protasov Evgeniy A.
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.2 s.302
    • /
    • pp.33-38
    • /
    • 2005
  • In this paper, the sensing unit of a non-invasive blood glucose sensor for home users, using a magneto-resonance absorption method, have been designed and manufactured. The sensor is capable of non-invasively determining blood glucose levels through measuring the 1H spin-lattice relaxation time in human body, The comparison of initial models, with different dimensions and shapes, for the sensing unit has led us to select the materials of the final model, which has adequate size and weight for home use. Through the design optimization using the FEM model, the dimension of final model has been determined to satisfy the required strength and uniformity of the magnetic field in the detecting area.