• Title/Summary/Keyword: Magneto impedance

Search Result 57, Processing Time 0.029 seconds

Magnetic Properties and Magnetoimpedance Effect in Mumetal Thin Films

  • Cho, Wan-Shik;Yoon, Tae-Sick;Lee, Heebok;Kim, Chong-Oh
    • Journal of Magnetics
    • /
    • v.6 no.1
    • /
    • pp.9-12
    • /
    • 2001
  • The dependence of the magnetoimpedance effect (MI) on magnetic properties has been investigated in mumetal thin films prepared by rf magnetron sputtering. Coercivity of thin films prepared at 400 W was about 0.4 Oe, and the magnetic anisotropy field of films deposited under a uniaxial magnetic field decreased with increasing film thickness. The saturation magnetization of mumetal films increased with rising input power and thickness and was smaller than that of permalloy films. Transverse incremental Permeability (TPR) of films of 1$\mu m$ thick increased with increasing effective permeability. The magneto impedance ratio (MIR) was proportional to TPR in films 1$\mu m$ thick but in spite of lower effective permeability at higher thicknesses, MIR increased due to skin effect. The height of the double peaks in the MIR curves decreased with decreasing anisotropy and thickness. The maximum MIR value for a 4$\mu m$ thick 75% at 36.5 MHz.

  • PDF

Annealing Effect of Local Anisotropy Field in Amorphous Co66Fe4Ni1B14Si15 Ribbon

  • Kim, C.G.;Jeong, M.H.;Jeong, M.H.;Yoon, S.S.;Yu, S.C.
    • Journal of Magnetics
    • /
    • v.3 no.4
    • /
    • pp.123-126
    • /
    • 1998
  • The magneto-impedance (MI) has been measured in the annealed Co66Fe4Ni1B14Si15 amorphous ribbon for the evaluation of anisotropy field. MI at the frequency of 10 MHz is related to the transverse permeability from rotational magnetization depending on the local anisotropy field. MI varies sensitively with the annealing temperature, reflecting the change of anisotropy field distribution. The local anisotropy fields evaluated from MI Profiles are discussed in terms of the magnetic softness and microstructural change by the annealing.

  • PDF

Meander type magnetic field sensors using amorphous ribbon (아몰퍼스리본을 이용한 미안더타입 자계센서)

  • K. H. Shin;J. Hur;G. Sa-Gong;Kim, Y.;J. Cho
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.230-231
    • /
    • 2002
  • 고주파전류가 통전되고 있는 연자성체에 외부자계가 인가되면 자성체의 표피효과(Skin effect)에 의해서 임피던스가 변화하게 된다. 따라서 고주파의 정전류를 통전시키면 자성체의 양단에서 전압의 크기는 외부에서 인가되는 자계에 따라 변화하게 되는데, 이 때의 전압을 자계로 환산함으로써 자계의 검출이 가능하다. 이러한 현상을 이용하여 자계를 검출하는 소자를 자기임피던스 센서(Magneto-Impedance sensor)라고 한다$^{1.2}$ . 자기임피던스 센서는 주로 연자성이 우수한 아몰퍼스 자성체를 이용하여 구성되고, 구조가 간단하며, 극히 우수한 자계 검출능력을 나타내므로, 차세대의 고감도 자계센서로서 주목을 받고 있다. (중략)

  • PDF

Three-poles Touch-type Corrosion Sensor for Edge Detection of Initial State of Iron Rust

  • Yonemoto, Naruto;Shida, Katsunori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.308-311
    • /
    • 1998
  • Some nondestructive diagnostic methods including various types of corrosion sensors have been investigated. Under these conditions, a new structure of sensor that has a pair of electrode and magneto-supply was proposed. In order to detect the edge of the iron rust part, three-poles touch-type corrosion sensor is now proposed. The iron rust pattern where the sensor touches is estimated by means of the impedance of the sensor, and the edge of the iron rust is recognized by comparing the three measured impedances. As the result, our proposed sensor is useful to detect the initial state of iron rust.

  • PDF

Design of Vibrating Transducer for Implantable Middle Ear Hearing Aid (이식형 중이 청각보조기를 위한 진동 트랜스듀서의 설계)

  • 박형욱
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.535-544
    • /
    • 1996
  • In this paper, we analyzed the coil-magnet type vibrating transducer for the implantable middle ear hearing aid which is appropriate for patient's hearing level, and an experimental transducer system is designed For the objective and quantitative analysis of the transducer, a theoretical equivalent model containing coil, magneto and inner ear is developed To perform effective evaluation of the transducer, a transforming ratio Tr is introduced and its range that is suitable for practical implantable middle ear hearing device is foun4 The result of applying physical parameters of ear system to the proposed analytical model shows that frequency response of the coil magrlet type vibrator is predominantly governed by resistive impedance of the coil rather than inertia effect of the magnet and the inner parameters. In addition, we realized an experimental middle ear hearing aid system to show the theoretical validity of designed system and this will provide the basis of the development for actually implantable system.

  • PDF

Edge Impulse Machine Learning for Embedded System Design (Edge Impulse 기계 학습 기반의 임베디드 시스템 설계)

  • Hong, Seon Hack
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.3
    • /
    • pp.9-15
    • /
    • 2021
  • In this paper, the Embedded MEMS system to the power apparatus used Edge Impulse machine learning tools and therefore an improved predictive system design is implemented. The proposed MEMS embedded system is developed based on nRF52840 system and the sensor with 3-Axis Digital Magnetometer, I2C interface and magnetic measurable range ±120 uT, BM1422AGMV which incorporates magneto impedance elements to detect magnetic field and the ARM M4 32-bit processor controller circuit in a small package. The MEMS embedded platform is consisted with Edge Impulse Machine Learning and system driver implementation between hardware and software drivers using SensorQ which is special queue including user application temporary sensor data. In this paper by experimenting, TensorFlow machine learning training output is applied to the power apparatus for analyzing the status such as "Normal, Warning, Hazard" and predicting the performance at level of 99.6% accuracy and 0.01 loss.

Microstructure and Magnetic Characteristics of Mn-doped Finemet Nanocomposites

  • Le, Anh-Tuan;Kim, Chong-Oh;Chau Nguyen;Tho Nguyen Duc;Hoa Nguyen Quang;Lee, Hee-Bok
    • Journal of Magnetics
    • /
    • v.11 no.1
    • /
    • pp.30-35
    • /
    • 2006
  • A thorough study about the influences of Mn substitution for Fe on the microstructure and magnetic characteristics of $Fe_{73.5-x}Mn-{x}Si_{13.5}B_{9}Nb_{3}Cu_1$ (x = 1, 3, 5) alloys prepared by the melt-spinning technique has been performed. Nanocomposites composed of nanoscale $(Fe,Mn)_{3}Si$ magnetic phase embedded in an amorphous matrix were obtained by annealing their amorphous alloys at $535^{\circ}C$ for 1 hour. The addition of Mn causes a slight increase in the mean grain size. The Curie temperatures of the initial amorphous phase and of the nanocrystals phase decreased, while the Curie temperature of the remaining amorphous phase remained nearly constant with increasing Mn content. Soft magnetic properties of the crystallized samples have been significantly improved by a proper thermal treatment. Accordingly, the giant magnetoimpedance effect is observed and ascribed to the increase of the magnetic permeability, and the decrease of the coercivity of the samples. The increased magnetic permeability is resulted from a decrease in the magnetocrystalline anisotropy and saturation magnetostriction.

Statistical Analysis of Pc1 Pulsations Observed by a BOH Magnetometer

  • Kim, Jiwoo;Hwang, Junga;Kim, Hyangpyo;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.19-27
    • /
    • 2020
  • Pc1 pulsations are important to consider for the interpretation of wave-particle interactions in the Earth's magnetosphere. In fact, the wave properties of these pulsations change dynamically when they propagate from the source region in the space to the ground. A detailed study of the wave features can help understanding their time evolution mechanisms. In this study, we statistically analyzed Pc1 pulsations observed by a Bohyunsan (BOH) magneto-impedance (MI) sensor located in Korea (L = 1.3) for ~one solar cycle (November 2009-August 2018). In particular, we investigated the temporal occurrence ratio of Pc1 pulsations (considering seasonal, diurnal, and annual variations in the solar cycle), their wave properties (e.g., duration, peak frequency, and bandwidth), and their relationship with geomagnetic activities by considering the Kp and Dst indices in correspondence of the Pc1 pulsation events. We found that the Pc1 waves frequently occurred in March in the dawn (1-3 magnetic local time (MLT)) sector, during the declining phase of the solar cycle. They generally continued for 2-5 minutes, reaching a peak frequency of ~0.9 Hz. Finally, most of the pulsations have strong dependence on the geomagnetic storm and observed during the early recovery phase of the geomagnetic storm.

Ultra Low Field Sensor Using GMI Effect in NiFe/Cu Wires

  • Kollu, Pratap;Kim, Doung-Young;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • v.12 no.1
    • /
    • pp.35-39
    • /
    • 2007
  • A highly sensitive magnetic sensor using the Giant MagnetoImpedance effect has been developed. The sensor performance is studied and estimated. The sensor circuitry consists of a square wave generator (driving source), a sensing element in a form of composite wire of a 25 $\mu$m copper core electrodeposited with a thin layer of soft magnetic material ($Ni_{80}Fe_{20}$), and two amplifier stages for improving the gain, switching mechanism, scaler circuit, an AC power source driving the permeability of the magnetic coating layer of the sensing element into a dynamic state, and a signal pickup LC circuit formed by a pickup coil and an capacitor. Experimental studies on sensor have been carried out to investigate the key parameters in relation to the sensor sensitivity and resolution. The results showed that for high sensitivity and resolution, the frequency and magnitude of the ac driving current through the sensing element each has an optimum value, the resonance frequency of the signal pickup LC circuit should be equal to or twice as the driving frequency on the sensing element, and the anisotropy of the magnetic coating layer of the sensing wire element should be longitudinal.