• Title/Summary/Keyword: Magnetization measurement

Search Result 138, Processing Time 0.027 seconds

Pile Depth Prediction by Magnetic Logging (자력검층을 이용한 파일 심도 예측)

  • 김진후
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.231-236
    • /
    • 2000
  • In order to predict depth of the pile forward modeling and inversion of magnetic logging data was conducted by using a finite line of dipoles model. The horizontal component as well as the vertical component of magnetic fields can be measured in the borehole, and the magnetic anomalies can be obtained by subtracting the Earth's magnetic field from the measurement. The magnetic anomalies of the pile are considered as vector sum of induced magnetization due to the Earth's magnetic field and remnant magnetization possessed by steel strings in the pile. The magnetic anomalies are used as input data for inversion from which the length, the magnetic moment per unit length, and the dip angle of the pile can be obtained. From the inversion of synthetic noisy data, and the data obtained from the field model test it is found that the driving depth of the pile can be determined as close to the order of measuring interval (5∼10㎝). It is also found that the resultant magnetic anomalies due to an individual steel string in the pile are almost same as those due to a group of steel strings located at the center of the pile. The magnetic logging method also can be used for locating reinforced bars, pipes, and steel casings.

  • PDF

Analysis of Microwave Permeability and Damping Constant in Amorphous CoFeHfO Thin Film (비정질 CoFeHfO 박막 재료의 마이크로파 투자율 및 감쇠상수 분석)

  • Kim, Dong-Young;Yoon, Seok-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.4
    • /
    • pp.147-151
    • /
    • 2009
  • The saturation magnetization and uniaxial anisotropy constant were obtained from magnetization and torque curves measurement in high resistive CoFeHfO thin film. The measured results were used for the analysis of the microwave complex permeability based on Landau-Lifshitz-Gilbert (LLG) theory. The high resistive CoFeHfO thin films showed very low damping constants of ${\alpha}$ = 0.014. The results are interpreted in terms of various magnetic phase with very low damping constant, which were existing inside the CoFeHfO thin film, through the linewidth analysis of the ferromagnetic resonance signal with magnetic field.

Behavior of the Vortex Flux in a Polycrystalline $Y_1Ba_2Cu_3O_{7-\delta}$Superconductor in a Rotational Experiment (회전실험에서의 다결성 $Y_1Ba_2Cu_3O_{7-\delta}$ 초전도체내의 vorterx flux의 거동)

  • 박성재;김용석;김채옥
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.9
    • /
    • pp.752-757
    • /
    • 1998
  • Rotational Magnetization-vector measurements have been performed on a polycrystalline $Y_1Ba_2Cu_3O_{7-\delta}$ sample in field-cooled condition at 4.2 K. The experimental results show that vortex flux density(B) consists of 3 groups :(1) a weak pinning part ($B_w$) which stays at a fixed angle relative to the magnetic field f(H) ; (2) a strong pining part($B_s$) which rotates rigidly with the sample and has same magnitude with the sample rotation, and(3) and intermediated pining part ($B_i$) which rotates rigidly with the sample, but whose magnitude changes with the sample rotation Our results have been explained in terms of a distribution in the strength of the vortex pinning torque and a repulsive intervortex torque.

  • PDF

Energy Loss Measurement of Non-oriented Electrical Steel Sheets Under Rotational Magnetization (회전자화에 의한 무방향성 전기강판의 철손측정)

  • Son, D.;Kum, Chae
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.4
    • /
    • pp.178-182
    • /
    • 2000
  • We have constructed a rotational loss measuring system which consists of two yoke system for rotational magnetization and 4-channel transient recording system for Hx, Hy, Bx and By measurements. Using the constructed measuring system, we have mesaured rotational energy loss for non-oriented electrical steel sheets. Rotational energy loss was depending on the angle between B-search coil and H-search coil, and the direction of rotation (clockwise and counter clockwise). The average of the rotational energy losses under clockwise and counter clockwise was independent of the angle between B-search coil and H-search coil, and we could improve measuring uncertainty using the averaged rotational energy losses.

  • PDF

Effect of NiO spin switching on the Fe film magnetic anisotropy in epitaxially grown Fe/NiO/Ag(001) and Fe/NiO/MgO(001) systems

  • Kim, Won-Dong;Park, Ju-Sang;Hwang, Chan-Yong;Wu, J.;Qiu, Z.Q.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.366-366
    • /
    • 2010
  • Single crystalline Fe/NiO bilayers were epitaxially grown on Ag(001) and on MgO(001), and investigated by Low Energy Electron Diffraction (LEED), Magneto-Optic Kerr Effect (MOKE), and X-ray Magnetic Linear Dichorism (XMLD). We find that while the Fe film has an in-plane magnetization in both Fe/NiO/Ag(001) and Fe/NiO/MgO(001) systems, the NiO spins switch from out-of-plane direction in Fe/NiO/MgO(001) to in-plane direction in Fe/NiO/Ag(001). These two different NiO spin orientations generate remarkable different effects that the NiO induced magnetic anisotropy in the Fe film is much greater in Fe/NiO/Ag(001) than in Fe/NiO/MgO(001). XMLD measurement shows that the much greater magnetic anisotropy in Fe/NiO/Ag(001) is due to a 90o-coupling between the in-plane NiO spins and the in-plane Fe spins which causes a switching of the NiO spins during the Fe magnetization reversal.

  • PDF

The Magnetic Entropy Change on La0.7Ba0.3Mn1-xFexO3 Compound

  • Hwang, J.S.;Jang, D.M.;Kim, K.S.;Lee, J.S.;Yu, S.C.
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.30-33
    • /
    • 2013
  • The magnetocaloric effect and magnetization behavior have been analyzed in the double-perovskite $La_{0.7}Ba_{0.3}Mn_{1-X}Fe_XO_3$ compound with the sintering temperature at 1273 K. Samples were fabricated by the conventional solid-state reaction method. X-ray diffraction measurement revealed that all the samples had a single phase in orthorhombic. Detailed investigations of the magnetic entropy behavior of the samples were discussed with the variation of $T_C$. The magnetic entropy changes, ${\Delta}S_M$ of approximately 0.36-1.14 J/kg K were obtained in the temperature range of 145-350 K for the $La_{0.7}Ba_{0.3}Mn_{1-X}Fe_XO_3$ compound. The enhancement of the magnetic entropy change is believed to be due to changes in the microstructure, which changes the magnetic part of the entropy of a solid around the magnetic ordering temperature.

Co Ion-implanted GaN and its Magnetic Properties

  • Kim, Woo-Chul;Kang, Hee-Jae;Oh, Suk-Keun;Shin, Sang-Won;Lee, Jong-Han;Song, Jong-Han;Noh, Sam-Kyu;Oh, Sang-Jun;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.11 no.1
    • /
    • pp.16-19
    • /
    • 2006
  • $2-\mu{m}$ thick GaN epilayer was prepared, and 80 KeV $Co^{-}$ ions with a dose of $3X10^{16}\;cm^{-2}$ were implanted into GaN at $350^{\circ}C$. The implanted samples were post annealed at $700^{\circ}C$. We have investigated the magnetic and structural properties of Co ion-implanted GaN by various measurements. HRXRD results did not show any peaks associated with second phase formation and only the diffraction from the GaN layer and substrate structure were observed. SIMS profiles of Co implanted into GaN before and after annealing at $700^{\circ}C$ have shown a projected range of $\sim390\AA$ with 7.4% concentration and that there is little movement in Co. AFM measurement shows the form of surface craters for $700^{\circ}C$-annealed samples. The magnetization curve and temperature dependence of magnetization taken in zero-field-cooling (ZFC) and field-cooling (FC) conditions showed the features of superparamagnetic system in film. XPS measurement showed the metallic Co 2p core levels spectra for $700^{\circ}C$-annealed samples. From this, it could be explained that magnetic property of our films originated from Co magnetic clusters.

Preparation and characterization of magnetic nanoparticles with two kinds of core/shell structures (핵/껍질 구조를 가진 두 종류의 자기 나노입자의 제조와 특성비교)

  • 고영재;손인호;김영국;동성용;이근진;박규섭
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.87-92
    • /
    • 2001
  • Magnetic Fe-Co(C) nanocapsules and Fe-Co nanoparticles were prepared by arc-discharge in two kinds of atmospheres, i.e. methane and a mixture of ($H_2$+Ar), respectively. Characterization and magnetic properties of this two kinds of ultrafine particles were investigated systematically by means of X-ray diffraction, Mssbauer spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, energy disperse spectroscopy analysis, chemical analysis, oxygen determination and magnetization measurement. Effects of carbon element, decomposed from a methane atmosphere in carbon arc process, on phase structures, magnetic states and surface characterization were studied in comparison to that of Ar element. Two ultrafine particles showed a little difference in the weight ratio of (Fe/co) and the size for Fe-Co nanoparticles was about two times bigger than Fe-Co(C) nanocapsules. The saturation magnetization of Fe-Co (C) nanocapsules was about 8% higher than that of Fe-Co nanoparticles while their phase constitutions were similar. Although no carbon could be detected by XRD measurement because of extremely thin shells on the surfaces of the cores, it is still believed that they are carbon and oxygen layers.

  • PDF

A Study of Characteristic of Electrical-magnetic and Neutron Diffraction of Long-wire High-superconductor for Reducing Energy Losses

  • Jang, Mi-Hye
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.265-272
    • /
    • 2008
  • In this paper, AC losses of long wire Bi-2223 tapes with different twist pitch of superconducting core were fabricated, measured and analyzed. These samples produced by a powder-in-tube method are multi-filamentary tape with Ag matrix. Also, it's produced by non-twist. The critical current measurement was carried out under the environment in Liquid nitrogen and in zero field by 4-prob method. And the Magnetic measurement was carried out under the environment of applied time-varying transport current by transport method. From experiment, the susceptibility measurements were conducted while cooling in a magnetic field. Flux loss measurements were conducted as a function of ramping rate, frequency and field direction. The AC flux loss increases as the twist-pitch of the tapes decreased, in agreement with the Norris Equation. Neutron-diffraction measurements have been carried out investigate the crystal structure, magnetic structures, and magnetic phase transitions in Bi-2223([Bi, Pb]:Sr:Ca:Cu:O).

Flux Loss and Neutron Diffraction Measurement Ag-sheathed Bi-2223 Tapes in terms of Flux Creep

  • Jang Mi-Hye
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.5
    • /
    • pp.204-210
    • /
    • 2005
  • Alternating current (AC) losses of two Bi-2223 ([Bi, Pb]: Sr: Ca: Cu: O = 2:2:2:3) tapes [(Tape I, un-twist-pitch) and the other with a twist-pitch of 10 mm (Tape II)] were measured and compared. These samples, produced by the powder-in-(Ag) tube (PIT) method, are multi-filamentary. Also, it's produced by non-twist and different twist pitch (8, 10, 13, 30, 50 and 70 mm). The critical current measurement was carried out under the environment in liquid Nitrogen and in zero-field by 4-probe method. Susceptibility measurements were conducted while cooling in a magnetic field. Flux loss measurements were conducted as a function of ramping rate, frequency and field direction. The AC flux loss increases as the twist-pitch of the tapes decreased, in agreement with the Norris Equation. Neutron-diffraction measurements have been carried out investigate the crystal structure, magnetic structures, and magnetic phase transitions in Bi-2223([Bi, Pb]:Sr:Ca:Cu:O)