• Title/Summary/Keyword: Magnetization Transfer Imaging

Search Result 15, Processing Time 0.019 seconds

Magnetization Transfer Contrast Angiography for Organized Thrombosed Intracranial Aneurysm in TOF MR Angiography: a Case Report

  • Kang, Dong-Hun;Lee, Hui Joong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.4
    • /
    • pp.266-271
    • /
    • 2018
  • A 66-year-old woman was referred for treatment of incidental detection of two intracranial aneurysms. Time-of-flight MR angiography (TOF MRA) revealed two aneurysms at the M1 segment of the right middle cerebral artery, and clinoid segment of left internal carotid artery, respectively. On digital subtraction angiography, there was a saccular aneurysm on the left internal carotid artery, but the other aneurysm was not detected on the right middle cerebral artery. Based on comprehensive review of imaging findings, organized thrombosed aneurysm was judged as the most likely diagnosis. In the presented report, magnetization transfer (MT) pulse to TOF MRA was used, to differentiate aneurysm-mimicking lesion on TOF MRA. We report that MT technique could be effective in differentiating true aneurysm, from possible T1 high signal artifact on TOF MRA.

Postcontrast T1-weighted Brain MR Imaging in Children: Comparison of Fat-suppressed Imaging with Conventional or Magnetization Transfer Imaging

  • 이충욱;구현우;최충곤
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.37-37
    • /
    • 2003
  • To assess the merits and demerits of postcontrast fat-suppressed (FS) brain MR imaging in children in the evaluation of various enhancing lesions, compared with postcontrast conventional or Magnetization Transfer (MT) imaging. 대상 및 방법: We reviewed patients with enhancing lesion on brain MR imaging who underwent both FS imaging and one of conventional or MT imaging as a postcontrast T1-weighted brain MR imaging. Inclusion criteria of our study were as follows: MR studies should be peformed within one-year interval and showed no significant interval change of imaging findings. Thirty-four patients (21 male, 13 female; mean age, 8 years) with 43 enhancing lesions (19 intra-axial, 19 extra-axial, and 5 orbital location) were included in this study, Twenty-one pairs of FS and conventional imaging, and 15 pairs of FS and MT imaging were available. Two radiologists visually assessed the lesion conspicuity and the presence of flow or susceptibility artifacts in a total of 36 pairs of MR imaging by consensus. For 21 measurable lesions (19 pairs of FS and conventional imaging, 5 pairs of FS and MR imaging), contrast ratio between the lesion and the normal brain( [SIlesion-SIwater]/[SInormal brain-SIwater]) were calculated and compared.

  • PDF

Role of Chemical Exchange Saturation Transfer and Magnetization Transfer MRI in Detecting Metabolic and Structural Changes of Renal Fibrosis in an Animal Model at 3T

  • Anqin Li;Chuou Xu;Ping Liang;Yao Hu;Yaqi Shen;Daoyu Hu;Zhen Li;Ihab R. Kamel
    • Korean Journal of Radiology
    • /
    • v.21 no.5
    • /
    • pp.588-597
    • /
    • 2020
  • Objective: To investigate the value of combined chemical exchange saturation transfer (CEST) and conventional magnetization transfer imaging (MT) in detecting metabolic and structural changes of renal fibrosis in rats with unilateral ureteral obstruction (UUO) at 3T MRI. Materials and Methods: Thirty-five Sprague-Dawley rats underwent UUO surgery (n = 25) or sham surgery (n = 10). The obstructed and contralateral kidneys were evaluated on days 1, 3, 5, and 7 after surgery. After CEST and MT examinations, 18F-labeled fluoro-2-deoxyglucose positron emission tomography was performed to quantify glucose metabolism. Fibrosis was measured by histology and western blots. Correlations were compared between asymmetrical magnetization transfer ratio at 1.2 ppm (MTRasym(1.2ppm)) derived from CEST and maximum standard uptake value (SUVmax) and between magnetization transfer ratio (MTR) derived from MT and alpha-smooth muscle actin (α-SMA). Results: On days 3 and 7, MTRasym(1.2ppm) and MTR of UUO renal cortex and medulla were significantly different from those of contralateral kidneys (p < 0.05). On day 7, MTRasym(1.2ppm) and MTR of UUO renal cortex and medulla were significantly different from those of sham-operated kidneys (p < 0.05). The MTRasym(1.2ppm) of UUO renal medulla was fairly negatively correlated with SUVmax (r = -0.350, p = 0.021), whereas MTR of UUO renal medulla was strongly negatively correlated with α-SMA (r = -0.744, p < 0.001). Conclusion: CEST and MT could provide metabolic and structural information for comprehensive assessment of renal fibrosis in UUO rats in 3T MRI and may aid in clinical monitoring of renal fibrosis in patients with chronic kidney disease.

Evaluation of Magnetization Transfer Ratio Imaging by Phase Sensitive Method in Knee Joint (슬관절 부위에서 자화전이 위상감도법에 의한 자화전이율 영상 평가)

  • Yoon, Moon-Hyun;Seung, Mi-Sook;Choe, Bo-Young
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.269-275
    • /
    • 2008
  • Although MR imaging is generally applicable to depict knee joint deterioration it, is sometimes occurred to mis-read and mis-diagnose the common knee joint diseases. In this study, we employed magnetization transfer ratio (MTR) method to improve the diagnosis of the various knee joint diseases. Spin-echo (SE) T2-weighted images (TR/TE 3,400-3,500/90-100 ms) were obtained in seven cases of knee joint deterioration, FSE T2-weighted images (TR/TE 4,500-5,000/100-108 ms) were obtained in seven cases of knee joint deterioration, gradient-echo (GRE) T2-weighted images (TR/TE 9/4.56/$50^{\circ}$ flip angle, NEX 1) were obtained in 3 cases of knee joint deterioration, In six cases of knee joint deterioration, fat suppression was performed using a T2-weighted short T1/tau inverse recovery (STIR) sequence (TR/TE =2,894-3,215 ms/70 ms, NEX 3, ETL 9). Calculation of MTR for individual pixels was performed on registration of unsaturated and saturated images. After processing to make MTR images, the images were displayed in gray color. For improving diagnosis, three-dimensional isotropic volume images, the MR tristimulus color mapping and the MTR map was employed. MTR images showed diagnostic images quality to assess the patients' pathologies. The intensity difference between MTR images and conventional MRI was seen on the color bar. The profile graph on MTR imaging effect showed a quantitative measure of the relative decrease in signal intensity due to the MT pulse. To diagnose the pathologies of the knee joint, the profile graph data was shown on the image as a small cross. The present study indicated that MTR images in the knee joint were feasible. Investigation of physical change on MTR imaging enables to provide us more insight in the physical and technical basis of MTR imaging. MTR images could be useful for rapid assessment of diseases that we examine unambiguous contrast in MT images of knee disorder patients.

  • PDF

Postcontrast Brain MR Imaging in Children: Various Pulse Sequences and Imaging Strategies

  • 이충욱;구현우
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.100-100
    • /
    • 2003
  • In brain MR imaging, contrast-enhanced study is important in the detection and characterization of lesions. As a postcontrast brain MR imaging, conventional T1 weighted imaging has been usually used. Magnetization transfer imaging has been used to increase conspicuity of enhancing lesions. In addition, fat-suppression imaging can be used as in other parts of the body. Recently, FLAIR sequence has been reported to be useful in detecting subarachnoid, meningeal, and subdural abnormalities. In this exhibit, we demonstrate basic principles and typical appearances of various pulse sequences that can be used as a postcontrast brain MR imaging in children. Furthermore, we discuss imaging strategies to increase clinical usefulness of postcontrast brain MR imaging for specific abnormalities. The advantages and disadvantages of each pulse sequence are also discussed.

  • PDF

Quantitative Evaluation of the First Order Creatine-Kinase Reaction Rate Constant in in vivo Shunted Ovine Heart Treated with Oxandrolone Using Magnetization Transfer 31P Magnetic Resonance Spectroscopy (MT-31P-MRS) and 1 H/31P Double-Tuned Surface Coil: a Preliminary Study

  • Thapa, Bijaya;Dahl, Marjanna;Kholmovski, Eugene;Burch, Phillip;Frank, Deborah;Jeong, Eun-Kee
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.1
    • /
    • pp.26-36
    • /
    • 2018
  • Purpose: Children born with single ventricle physiology demonstrate poor growth rate and suffer from malnutrition, which lead to increased morbidity and mortality in this population. We assume that an anabolic steroid, oxandrolone, will promote growth in these infants by improving myocardial energy utilization. The purpose of this paper is to study the efficacy of oxandrolone on myocardial energy consumption in these infants. Materials and Methods: We modeled single ventricle physiology in a lamb by prenatally shunting the aorta to the pulmonary artery and then postnatally, we monitored cardiac energy utilization by quantitatively measuring the first order reaction rate constant, $k_f$ of the creatine-kinase reaction in the heart using magnetization transfer $^{31}P$ magnetic resonance spectroscopy, home built $^1H/^{31}P$ transmit/receive double tuned coil, and transmit/receive switch. We also performed cine MRI to study the structure and dynamic function of the myocardium and the left ventricular chamber. The spectroscopy data were processed using home-developed python software, while cine data were analyzed using Argus software. Results: We quantitatively measured both the first order reaction rate constant and ejection fraction in the control, shunted, and the oxandrolone-treated lambs. Both $k_f$ and ejection fraction were found to be more significantly reduced in the shunted lambs compared to the control lambs, and they are increased in oxandrolone-treated lambs. Conclusion: Some improvement was observed in both the first order reaction rate constant and ejection fraction for the lamb treated with oxandrolone in our preliminary study.

Quantitative Analysis of Magnetization Transfer by Phase Sensitive Method in Knee Disorder (무릎 이상에 대한 자화전이 위상감각에 의한 정량분석법)

  • Yoon, Moon-Hyun;Sung, Mi-Sook;Yin, Chang-Sik;Lee, Heung-Kyu;Choe, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.98-107
    • /
    • 2006
  • Magnetization Transfer (MT) imaging generates contrast dependent on the phenomenon of magnetization exchange between free water proton and restricted proton in macromolecules. In biological materials in knee, MT or cross-relaxation is commonly modeled using two spin pools identified by their different T2 relaxation times. Two models for cross-relaxation emphasize the role of proton chemical exchange between protons of water and exchangeable protons on macromolecules, as well as through dipole-dipole interaction between the water and macromolecule protons. The most essential tool in medical image manipulation is the ability to adjust the contrast and intensity. Thus, it is desirable to adjust the contrast and intensity of an image interactively in the real time. The proton density (PD) and T2-weighted SE MR images allow the depiction of knee structures and can demonstrate defects and gross morphologic changes. The PD- and T2-weighted images also show the cartilage internal pathology due to the more intermediate signal of the knee joint in these sequences. Suppression of fat extends the dynamic range of tissue contrast, removes chemical shift artifacts, and decreases motion-related ghost artifacts. Like fat saturation, phase sensitive methods are also based on the difference in precession frequencies of water and fat. In this study, phase sensitive methods look at the phase difference that is accumulated in time as a result of Larmor frequency differences rather than using this difference directly. Although how MT work was given with clinical evidence that leads to quantitative model for MT in tissues, the mathematical formalism used to describe the MT effect applies to explaining to evaluate knee disorder, such as anterior cruciate ligament (ACL) tear and meniscal tear. Calculation of the effect of the effect of the MT saturation is given in the magnetization transfer ratio (MTR) which is a quantitative measure of the relative decrease in signal intensity due to the MT pulse.

  • PDF