• Title/Summary/Keyword: Magnetic resonance perfusion

Search Result 147, Processing Time 0.029 seconds

Hypointensity on Susceptibility-Weighted Images Prior to Signal Change on Diffusion-Weighted Images in a Hyperacute Ischemic Infarction: a Case Study

  • Kim, Dajung;Lee, Hyeonbin;Jung, Jin-Man;Lee, Young Hen;Seo, Hyung Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.2
    • /
    • pp.131-134
    • /
    • 2018
  • Susceptibility-weighted imaging (SWI) is well known for detecting the presence of hemorrhagic transformation, microbleeds and the susceptibility of vessel signs in acute ischemic stroke. But in some cases, it can provide the tissue perfusion state as well. We describe a case of a patient with hyperacute ischemic infarction that had a slightly hypodense, patchy lesion at the left thalamus on the initial SWI, with a left proximal posterior cerebral artery occlusion on a magnetic resonance (MR) angiography and delayed time-to-peak on an MR perfusion performed two hours after symptom onset. No obvious abnormal signals at any intensity were found on the initial diffusion-weighted imaging (DWI). On a follow-up MR image (MRI), an acute ischemic infarction was seen on DWI, which is the same location as the lesion on SWI. The hypointensity on the initial SWI reflects the susceptibility artifact caused by an increased deoxyhemoglobin in the affected tissue and vessels, which reflects the hypoperfusion state due to decreasing arterial flow. It precedes the signal change on DWI that reflects a cytotoxic edema. This case highlights that, in some hyperacute stages of ischemic stroke, hypointensity on an SWI may be a finding before the hyperintensity is seen on a DWI.

Value of Perfusion Weighted Magnetic Resonance Imaging in the Diagnosis of Supratentorial Anaplastic Astrocytoma

  • Lee, Kyung Mi;Kim, Eui Jong;Jahng, Geon-Ho;Park, Bong Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.3
    • /
    • pp.261-264
    • /
    • 2014
  • We report perfusion weighted imaging (PWI) findings of nonenhanced anaplastic astrocytoma in a 30-year-old woman. Brain magnetic resonance imaging showed a nonenhanced brain tumor with mild peritumoral edema on the right medial frontal lobe and right genu of corpus callosum, suggesting a low-grade glioma. However, PWI showed increased relative cerebral blood volume, relative cerebral blood flow, and permeability of nonenhanced brain tumor compared with contralateral normal brain parenchyma, suggesting a high-grade glioma. After surgery, final histopathological analysis revealed World Health Organization grade III anaplastic astrocytoma. This case demonstrates the importance of PWI for preoperative evaluation of nonenhanced brain tumors.

Improved Perfusion Contrast and Reliability in MR Perfusion Images Using A Novel Arterial Spin Labeling

  • Jahng, Geon-Ho;Xioaping Zhu;Gerald Matson;Weiner, Michael-W;Norbert Schuff
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.341-344
    • /
    • 2002
  • Neurodegenerative disorders, like Alzheimer's disease, are often accompanied by reduced brain perfusion (cerebral blood flow). Using the intrinsic magnetic properties of water, arterial spin labeling magnetic resonance imaging (ASLMRI) can map brain perfusion without injection of radioactive tracers or contrast agents. However, accuracy in measuring perfusion with ASL-MRI can be limited because of contributions to the signal from stationary spins and because of signal modulations due to transient magnetic field effects. The goal was to optimize ASL-MRI for perfusion measurements in the aging human brain, including brains with Alzheimer's disease. A new ASL-MRI sequence was designed and evaluated on phantom and humans. Image texture analysis was performed to test quantitatively improvements. Compared to other ASL-MRI methods, the newly designed sequence provided improved signal to noise ratio improved signal uniformity across slices, and thus, increased measurement reliability. This new ASL-MRI sequence should therefore provide improved measurements of regional changes of brain perfusion in normal aging and neurodegenerative disorders.

  • PDF

Lung Perfusion Imaging and $Tc^{99m}-Macroaggregated$ Human Serum Albumin

  • Haider, Kh.H.;Ilyas, M.;Hyder, Q.;Kim, Chong-Kook
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.2
    • /
    • pp.73-80
    • /
    • 2001
  • Lung perfusion scanning, invariably combined with ventilation studies provides a reliable and non-invasive mean to diagnose lung related pathologies despite the availability of modern techniques such as angiography, magnetic resonance imaging, magnetic resonance angiography, and helical (spiral) computed tomography. The technique involves the generation of images by radiations emitted from radioisotopes introduced in to the lungs. Various radiopharmaceuticals have been proposed and designed to incorporate $Tc^{99m}$ in to macroparticulate form for lung perfusion imaging. However, most of these have associated difficulties such as reproducibility of the product with regards to particle size distribution and poor elimination from the lung capillary bed. $Tc^{99m}$ macroaggregated albumin $(Tc^{99m}-MAA)$ is used extensively for clinical lung perfusion imaging and is considered as the radiopharmaceutical of choice. It is non-toxic, safe, and being biodegradable, is easily eliminated from the lung capillary bed by proteolytic enzyme metabolism and by mechanical forces due to lung movement.

  • PDF

Overview of Arterial Spin Labeling Perfusion MRI (동맥스핀표지 관류 자기공명영상의 개요)

  • Kang, Sung-Jin;Han, Man-Seok
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.4
    • /
    • pp.145-152
    • /
    • 2017
  • The arterial spin labeling (ASL) is a magnetic resonance imaging (MRI) method that can evaluate tissue perfusion using blood in the body. The characteristic of non-invasive examinations without contrast agents and the quantitative measurement of perfusion volume is possible, which are increasingly being used for clinical and research purposes. Up to the present, The ASL method has lower SNR than the perfusion imaging method using contrast agent and because optimization of various parameter in the imaging process is difficult, Which may result in measurement errors. To improve this, ASL methods using various technologies are introduced. This paper briefly introduces the outline of ASL, its features in imaging process, various techniques, and clinical application.

Perceived Dark Rim Artifact in First-Pass Myocardial Perfusion Magnetic Resonance Imaging Due to Visual Illusion

  • Taehoon Shin;Krishna S. Nayak
    • Korean Journal of Radiology
    • /
    • v.21 no.4
    • /
    • pp.462-470
    • /
    • 2020
  • Objective: To demonstrate that human visual illusion can contribute to sub-endocardial dark rim artifact in contrast-enhanced myocardial perfusion magnetic resonance images. Materials and Methods: Numerical phantoms were generated to simulate the first-passage of contrast agent in the heart, and rendered in conventional gray scale as well as in color scale with reduced luminance variation. Cardiac perfusion images were acquired from two healthy volunteers, and were displayed by the same gray and color scales used in the numerical study. Before and after k-space windowing, the left ventricle (LV)-myocardium boarders were analyzed visually and quantitatively through intensity profiles perpendicular the boarders. Results: k-space windowing yielded monotonically decreasing signal intensity near the LV-myocardium boarder in the phantom images, as confirmed by negative finite difference values near the board ranging -1.07 to -0.14. However, the dark band still appears, which is perceived by visual illusion. Dark rim is perceived in the in-vivo images after k-space windowing that removed the quantitative signal dip, suggesting that the perceived dark rim is a visual illusion. The perceived dark rim is stronger at peak LV enhancement than the peak myocardial enhancement, due to the larger intensity difference between LV and myocardium. In both numerical phantom and in-vivo images, the illusory dark band is not visible in the color map due to reduced luminance variation. Conclusion: Visual illusion is another potential cause of dark rim artifact in contrast-enhanced myocardial perfusion MRI as demonstrated by illusory rim perceived in the absence of quantitative intensity undershoot.

Tumor-like Presentation of Tubercular Brain Abscess: Case Report

  • Karki, Dan B.;Gurung, Ghanashyam;Sharma, Mohan R.;Shrestha, Ram K.;Sayami, Gita;Sedain, Gopal;Shrestha, Amina;Ghimire, Ram K.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.4
    • /
    • pp.231-236
    • /
    • 2015
  • A 17-year-old girl presented with complaints of headache and decreasing vision of one month's duration, without any history of fever, weight loss, or any evidence of an immuno-compromised state. Her neurological examination was normal, except for papilledema. Laboratory investigations were within normal limits, except for a slightly increased Erythrocyte Sedimentation Rate (ESR). Non-contrast computerized tomography of her head revealed complex mass in left frontal lobe with a concentric, slightly hyperdense, thickened wall, and moderate perilesional edema with mass effect. Differential diagnoses considered in this case were pilocytic astrocytoma, metastasis and abscess. Magnetic resonance imaging (MRI) obtained in 3.0 Tesla (3.0T) scanner revealed a lobulated outline cystic mass in the left frontal lobe with two concentric layers of T2 hypointense wall, with T2 hyperintensity between the concentric ring. Moderate perilesional edema and mass effect were seen. Post gadolinium study showed a markedly enhancing irregular wall with some enhancing nodular solid component. No restricted diffusion was seen in this mass in diffusion weighted imaging (DWI). Magnetic resonance spectroscopy (MRS) showed increased lactate and lipid peaks in the central part of this mass, although some areas at the wall and perilesional T2 hyperintensity showed an increased choline peak without significant decrease in N-acetylaspartate (NAA) level. Arterial spin labelling (ASL) and dynamic susceptibility contrast (DSC) enhanced perfusion study showed decrease in relative cerebral blood volume at this region. These features in MRI were suggestive of brain abscess. The patient underwent craniotomy with excision of a grayish nodular lesion. Abundant acid fast bacilli (AFB) in acid fast staining, and epithelioid cell granulomas, caseation necrosis and Langhans giant cells in histopathology, were conclusive of tubercular abscess. Tubercular brain abscess is a rare manifestation that simulates malignancy and cause diagnostic dilemma. MRI along with MRS and magnetic resonance perfusion studies, are powerful tools to differentiate lesions in such equivocal cases.