• Title/Summary/Keyword: Magnetic resonance neurography(MRN)

Search Result 5, Processing Time 0.019 seconds

An Updated Review of Magnetic Resonance Neurography for Plexus Imaging

  • Joon-Yong Jung;Yenpo Lin;John A Carrino
    • Korean Journal of Radiology
    • /
    • v.24 no.11
    • /
    • pp.1114-1130
    • /
    • 2023
  • Magnetic resonance neurography (MRN) is increasingly used to visualize peripheral nerves in vivo. However, the implementation and interpretation of MRN in the brachial and lumbosacral plexi are challenging because of the anatomical complexity and technical limitations. The purpose of this article was to review the clinical context of MRN, describe advanced magnetic resonance (MR) techniques for plexus imaging, and list the general categories of utility of MRN with pertinent imaging examples. The selection and optimization of MR sequences are centered on the homogeneous suppression of fat and blood vessels while enhancing the visibility of the plexus and its branches. Standard 2D fast spin-echo sequences are essential to assess morphology and signal intensity of nerves. Moreover, nerve-selective 3D isotropic images allow improved visualization of nerves and multiplanar reconstruction along their course. Diffusion-weighted and diffusion-tensor images offer microscopic and functional insights into peripheral nerves. The interpretation of MRN in the brachial and lumbosacral plexi should be based on a thorough understanding of their anatomy and pathophysiology. Anatomical landmarks assist in identifying brachial and lumbosacral plexus components of interest. Thus, understanding the varying patterns of nerve abnormalities facilitates the interpretation of aberrant findings.

Role of MR Neurography for Evaluation of the Lumbosacral Plexus: A Scoping Review (요천추 신경총에 대한 자기공명신경조영술의 역할: 주제 범위 문헌고찰)

  • Seon Gyeong Kim;Joon-Yong Jung
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.6
    • /
    • pp.1273-1285
    • /
    • 2022
  • Purpose MR neurography (MRN) is an imaging technique optimized to visualize the peripheral nerves. This review aimed to discover an optimized protocol for MRN of the lumbosacral plexus (LSP) and identify evidence for the clinical benefit of lumbosacral plexopathies. Materials and Methods We performed a systematic search of the two medical databases until September 2021. 'Magnetic resonance imaging', 'lumbosacral plexus', 'neurologic disease', or equivalent terms were used to search the literature. We extracted information on indications, MRN protocols for LSP, and clinical efficacy from 55 studies among those searched. Results MRN of the LSP is useful for displaying the distribution of peripheral nerve disease, guiding perineural injections, and assessing extraspinal causes of sciatica. Three-dimensional short-tau inversion recovery turbo spin-echo combined with vascular suppression is the mainstay of MRN. Conclusion Future work on the MRN of LSP should be directed to technical maturation and clinical validation of efficacy.

Use of Magnetic Resonance Neurography for Evaluating the Distribution and Patterns of Chronic Inflammatory Demyelinating Polyneuropathy

  • Xiaoyun Su;Xiangquan Kong;Zuneng Lu;Min Zhou;Jing Wang;Xiaoming Liu;Xiangchuang Kong;Huiting Zhang;Chuansheng Zheng
    • Korean Journal of Radiology
    • /
    • v.21 no.4
    • /
    • pp.483-493
    • /
    • 2020
  • Objective: To evaluate the distribution and characteristics of peripheral nerve abnormalities in chronic inflammatory demyelinating polyneuropathy (CIDP) using magnetic resonance neurography (MRN) and to examine the diagnostic efficiency. Materials and Methods: Thirty-one CIDP patients and 21 controls underwent MR scans. Three-dimensional sampling perfections with application-optimized contrasts using different flip-angle evolutions and T1-/T2- weighted turbo spin-echo sequences were performed for neurography of the brachial and lumbosacral (LS) plexus and cauda equina, respectively. Clinical data and scores of the inflammatory Rasch-built overall disability scale (I-RODS) in CIDP were obtained. Results: The bilateral extracranial vagus (n = 11), trigeminal (n = 12), and intercostal nerves (n = 10) were hypertrophic. Plexus hypertrophies were observed in the brachial plexus of 19 patients (61.3%) and in the LS plexus of 25 patients (80.6%). Patterns of hypertrophy included uniform hypertrophy (17 [54.8%] brachial plexuses and 21 [67.7%] LS plexuses), and multifocal fusiform hypertrophy (2 [6.5%] brachial plexuses and 4 [12.9%] LS plexuses) was present. Enlarged and/or contrast-enhanced cauda equina was found in 3 (9.7%) and 13 (41.9%) patients, respectively. Diameters of the brachial and LS nerve roots were significantly larger in CIDP than in controls (p < 0.001). The largest AUC was obtained for the L5 nerve. There were no significant differences in the course duration, I-RODS score, or diameter between patients with and without hypertrophy. Conclusion: MRN is useful for the assessment of distribution and characteristics of the peripheral nerves in CIDP. Compared to other regions, LS plexus neurography is more sensitive for CIDP.

The Value of MRI in Diagnosis of Peripheral Nerve Disorders (말초신경질환에서 자기공명영상의 진단적 가치)

  • Lee, Han Young;Lee, Jang Chull;Kim, Il-Man;Lee, Chang-Young;Ikm, Eun;Kim, Dong Won;Yim, Man Bin
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.9
    • /
    • pp.1120-1126
    • /
    • 2001
  • Objective : The development of magnetic resonance neurography(MRN) has made it possible to produce highresolution images of peripheral nerves themselves, as well as associated intraneural and extraneural lesions. We evaluated the clinical application and utility of high-resolution MRN techniques for the diagnosis and treatment of a variety of peripheral nerve disorder(PND)s. Material and Method : MRN images were obtained using T1-weighted spin echo, T2-weighted fast spin echo with fat suppression, and short tau inversion recovery(STIR) fast spin-echo pulse sequences. Fifteen patients were studied, three with brachial plexus tumors, five with chronic entrapment syndromes, and seven with traumatic peripheral lesions. Ten patients underwent surgery. Results : In MRN with STIR sequences of axial and coronal imagings, signals of the peripheral nerves with various lesions were detected as fairly bright signals and were discerned from signals of the uninvolved nerves. Increased signal with proximal swelling and distal flattening of the median nerve were seen in all patients of carpal tunnel syndrome. Among the eight patients with brachial plexus injury or tumors, T2-weighted MRN showed increased signal intensity in involved roots in five, enhanced mass lesions in three, and traumatic pseudomeningocele in three. Other associated MRI findings were adjacent bony signal change, neuroma, root adhesion and denervated muscle atophy with signal change. Conclusion : MRN with high-resolution imaging can be useful in the preoperative evaluation and surgical planning in patients with peripheral nerve lesions.

  • PDF

Diffusion-Weighted MR Neurography with Unidirectional Motion-Probing Gradient to Evaluate Lumbar Nerve Roots at 1.5T MR (요추 신경근 평가를 위한 1.5T MR의 단일 방향 경사자장을 사용한 확산강조 자기공명신경조영)

  • Na Yeon Yoon;Doo Hoe Ha;Sang Min Lee;Hye Jung Choi
    • Journal of the Korean Society of Radiology
    • /
    • v.85 no.3
    • /
    • pp.607-617
    • /
    • 2024
  • Purpose Recent studies have demonstrated the usefulness of diffusion-weighted MR neurography (DW MRN) for assessing nerve roots. This study aimed to evaluate the utility of DW MRN with a unidirectional motion-probing gradient (MPG) for the lumbar nerve roots at 1.5T MR. Materials and Methods Sixty-four lumbar spine MRI scans with DW MRN using anteroposterior unidirectional MPG were retrospectively analyzed. Any changes in the 512 lumbar spinal nerve roots from L3 to S1 were evaluated using T2-weighted imaging (T2WI), contrast-enhanced T1-weighted imaging (CE T1WI), and DW MRN, with agreement and correlation analysis. Results T2WI revealed compression of 78 nerve roots, and CE T1WI revealed 52 instances of nerve root enhancement. Sixty-seven nerve roots showed swelling and hyperintensity on DW MRN. A total of 42 nerve roots showed changes in the CE T1WI and DW MRN sequences. Moderate to substantial agreement and moderate positive correlation were observed between DW MRN and CE T1WI, as well as DW MRN and T2WI (κ = 0.59-0.65, ρ = 0.600-0.653). Conclusion DW MRN with unidirectional anteroposterior MPG can help evaluate neuritisrelated changes in spinal nerve roots and could serve as a sequence capable of complementing or substituting gadolinium CE imaging.