• Title/Summary/Keyword: Magnetic resonance (MR), functional

Search Result 83, Processing Time 0.029 seconds

MR imaging of cortical activation by painful peripheral stimulation in rats (쥐에서 말초 자극에 따른 뇌피질 활성화의 자기공명 영상)

  • Lee, Bae-Hwan;Cha, Myeoung-Hoon;Cheong, Chae-Joon;Lee, Kyu-Hong;Lee, Chul-Hyun;Sohn, Jin-Hun
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2009.11a
    • /
    • pp.183-185
    • /
    • 2009
  • As imaging technology develops, magnetic resonance imaging (MRI) techniques have contributed to the understanding of brain function by providing anatomical structure of the brain and functional imaging related to information processing. Manganese-enhanced MRI (MEMRI) techniques can provide useful information about functions of the nervous system. However, systematic studies regarding information processing of pain have not been conducted. The purpose of this study was to detect brain activation during painful electrical stimulation using MEMRI with high spatial resolution. Male Sprague-Dawley rats (250-300 g) were divided into 3 groups: normal control, sham stimulation, and electric stimulation. Rats were anesthetized with 2.5% isoflurane for surgery. Polyethylene catheter (PE-10) was placed in the external carotid artery to administrate mannitol and MnCl2. The blood brain barrier (BBB) was broken by 20% D-mannitol under anesthesia mixed with urethane and a-chloralose. The hind limb was electrically stimulated with a 2Hz (10V) frequency while MnCl2 was infused. Brain activation induced by electrical stimulation was detected using a 4.7 T MRI. Remarkable signal enhancement was observed in the primary sensory that corresponds to sensory tactile stimulation at the hind limb region. These results suggest that signal enhancement is related to functional activation following electrical stimulation of the peripheral receptive field.

  • PDF

Functional Neuroimaging of General Fluid Intelligencein Prodigies

  • Lee, Kun-Ho
    • Proceedings of the Korean Society for the Gifted Conference
    • /
    • 2003.05a
    • /
    • pp.137-138
    • /
    • 2003
  • Understanding how and why people differ is a fundamental, if distant, goal of research efforts to bridge psychological and biological levels of analysis. General fluid intelligence (gF) is a major dimension of individual differences and refers to reasoning and novel problemsolving ability. A conceptual integration of evidence from cognitive (behavioral) and anatomical studies suggeststhat gF should covary with both task performance and neural activity in specific brain systems when specific cognitive demands are present, with the neural activity mediating the relation between gF and performance. Direct investigation of this possibility will be a critical step toward a mechanistic model of human intelligence. In turn, a mechanistic model might suggest ways to enhance gF through targeted behavioral or neurobiological intervent ions, We formed two different groups as subjects based on their scholarly attainments. Each group consists of 20 volunteers(aged 16-17 years, right-handed males) from the National Gifted School and a local high school respectively. To test whether individual differences in general intelligence are mediated at a neural level, we first assessed intellectual characteristics in 40 subjects using standard intelligence tests (Raven's Advanced Progressive Matrices, Wechsler Adult Intelligence Scale, Torrance Tests of Creative Thinking) administered outside of the MR scanner. We then used functional magnetic resonance imaging (fMRl) to measure task-related brain activity as participants performed three different kinds of computerized reasoning tasks that were intended to activate the relevant neural systems. To examine the difference of neural activity according to discrepancy in general intelligence, we compared the brain activity of both extreme groups (each, n=10) of the participants based on the standard intelligence test scores. In contrast to the common expectation, there was no significant difference of brain region involved in high-g tasks between both groups. Random effect analysis exhibited that lateral prefrontal, anterior cingulate and parietal cortex are associated with gF. Despite very different task contents in the three high-g-low-g contrasts, recruitment of multiple regions is markedly similar in each case, However, on the task with high 9F correlations, the Prodigy group, (intelligence rank: >99%) showed higher task-related neural activity in several brain regions. These results suggest that the relationship between gF and brain activity should be stronger under high-g conditions than low-g conditions.

  • PDF

The Comparison of Susceptibility Changes in 1.5T and3.0T MRIs due to TE Change in Functional MRI (뇌 기능영상에서의 TE값의 변화에 따른 1.5T와 3.0T MRI의 자화율 변화 비교)

  • Kim, Tae;Choe, Bo-Young;Kim, Euy-Neyng;Suh, Tae-Suk;Lee, Heung-Kyu;Shinn, Kyung-Sub
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.2
    • /
    • pp.154-158
    • /
    • 1999
  • Purpose : The purpose of this study was to find the optimum TE value for enhancing $T_2^{*}$ weighting effect and minimizing the SNR degradation and to compare the BOLD effects according to the changes of TE in 1.5T and 3.0T MRI systems. Materials and Methods : Healthy normal volunteers (eight males and two females with 24-38 years old) participated in this study. Each volunteer was asked to perform a simple finger-tapping task (sequential opposition of thumb to each of the other four fingers) with right hand with a mean frequency of about 2Hz. The stimulus was initially off for 3 images and was then alternatively switched on and off for 2 cycles of 6 images. Images were acquired on the 1.5T and 3.0T MRI with the FLASH (fast low angle shot) pulse sequence (TR : 100ms, FA : $20^{\circ}$, FOV : 230mm) that was used with 26, 36, 46, 56, 66, 76ms of TE times in 1.5T and 16, 26, 36, 46, 56, 66ms of TE in 3.0T MRI system. After the completion of scan, MR images were transferred into a PC and processed with a home-made analysis program based on the correlation coefficient method with the threshold value of 0.45. To search for the optimum TE value in fMRI, the difference between the activation and the rest by the susceptibility change for each TE was used in 1.5T and 3.0T respectively. In addition, the functional $T_2^{*}$ map was calculated to quantify susceptibility change. Results : The calculated optimum TE for fMRI was $61.89{\pm}2.68$ at 1.5T and $47.64{\pm}13.34$ at 3.0T. The maximum percentage of signal intensity change due to the susceptibility effect inactivation region was 3.36% at TE 66ms in 1.5T 10.05% at TE 46ms in 3.0T, respectively. The signal intensity change of 3.0T was about 3 times bigger than of 1.5T. The calculated optimum TE value was consistent with TE values which were obtained from the maximum signal change for each TE. Conclusion : In this study, the 3.0T MRI was clearly more sensitive, about three times bigger than the 1.5T in detecting the susceptibility due to the deoxyhemoglobin level change in the functional MR imaging. So the 3.0T fMRI I ore useful than 1.5T.

  • PDF

Significance of brain magnetic resonance imaging(MRI) in the assessment of occupational manganese exposure (직업적 망간 폭로에 있어서 뇌자기공명영상의 의의)

  • 정해관
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.14-30
    • /
    • 1998
  • Manganese is an essential element in the body. It is mainly deposited in the liver and to a lesser degree in the basal ganglia of the brain and eliminated through the bile duct. Rapid turnover of managanese in the body makes it difficult to evaluate the manganese exposure in workers, esecially in those with irregular or intermittent exposure, like welders. Therefore, conventional biomarkers, including blood and urine manganese can provide only a limited information about the long-tern or cumulative exposure to manganese. Introduction of magnetic resonance imaging (MRI) made a progress in the assessment of manganese exposure in the medical conditions related to manganese accumulation, e. g. hepatic failure and long-term total parenteral nutrition. Manganese shortens spin-lattice(T1) relaxation time on MRI due to its paramagnetic property, resulting in high signal intensity (HSI) on T1-weighted image(T1W1) of MRI. Manganese deposition in the brain, therefore, can be visualizedas an HSI in the globus pallidus, the substantia nigra, the putamen and the pituitary. clinical and epidemiologic studies regarding the MRI findings in the cases of occupational and non-occupational manganese exposure were reviewed. relationships between HSI on T1W1 of MRI and age, gender, occupational manganese exposure, and neurological dysfunction were analysed. Relationships betwen biological exposure indices and HSI on MRE werealso reviewed. Literatures were reviewed to establish the relationships between HSI, Manganese deposition in the brain, pathologic findings, and neurological dysfunction. HSI on T1W1 of MRI reflects regional manganese deposition in the brain. This relationship enables an estimation of regional manganese deposition in the brain by analysing MR signal intensity. Manganese deposition in the brain can induce a neuronal loss in the basal ganglia but functional abnormality is supposed to be related to the cumulative exposure of manganese in the brain, use of brain MRI for the assessment of exposure in a group of workers seems to be hardly rationalized, while ti can be a useful adjunct for the evaluation of manganese exposure int he cases with suspected manganese-related health problems.

  • PDF

Somatotopic Mapping of the Supplementary Motor Area (부운동영역의 뇌지도화)

  • Han Young Min;Jeong Su-Hyun;Lee Heon;Jin Gong Yong;Lee Sang Yong;Chung Gyung Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.1
    • /
    • pp.9-16
    • /
    • 2004
  • Purpose : The purpose of this study was to assess supplementary motor area (SMA) activation during motor, sensory, word generation, listening comprehension, and working memory tasks using functional magnetic resonance imaging (fMRI). Materials and Methods : Sixteen healthy right-handed subjects (9M, 7F) were imaged on a Siemens 1.5T scanner. Whole brain functional maps were acquired using BOLD EPI sequences in the axial plane. Each paradigm consisted of five epochs of activation vs. the control condition. The activation tasks consisted of left finger complex movement, hot sensory stimulation of the left hand, word generation, listening comprehension, and working memory. The reference function was a boxcar waveform. Activation maps were thresholded at an uncorrected p=0.0001. The thresholded activation maps were placed into MNI space and the anatomic localization of activation within the SMA was compared across tasks. Results : SMA activation was observed in 16 volunteers for the motor task, 11 for the sensory task, 15 for the word generation task, 5 for the listening comprehension task, and 15 for the working memory task. The rostral aspects of the SMA showed activity during the word generation and working memory tasks, and the caudal aspects of the SMA showed activity during the motor and sensory tasks. Right (contralateral) SMA activation was observed during the motor and sensory tasks, and left SMA activation during the word generation and memory tasks. Conclusion : Our results suggest that SMA is involved in a variety of functional tasks including motor, sensory, word generation, and working memory. The results obtained also support the notion that functionally specific subregions exist within the region classically defined as the SMA.

  • PDF

Prognostic Implication of Right Ventricle Parameters Measured on Preoperative Cardiac MRI in Patients with Functional Tricuspid Regurgitation

  • Yura Ahn;Hyun Jung Koo;Joon-Won Kang;Won Jin Choi;Dae-Hee Kim;Jong-Min Song;Duk-Hyun Kang;Jae-Kwan Song;Joon Bum Kim;Sung-Ho Jung;Suk Jung Choo;Cheol Hyun Chung;Jae Won Lee;Dong Hyun Yang
    • Korean Journal of Radiology
    • /
    • v.22 no.8
    • /
    • pp.1253-1265
    • /
    • 2021
  • Objective: To investigate the prognostic value of preoperative cardiac magnetic resonance imaging (MRI) for long-term major adverse cardiac and cerebrovascular events (MACCEs) in patients undergoing tricuspid valve (TV) surgery for functional tricuspid regurgitation (TR). Materials and Methods: The preoperative cardiac MR images, New York Heart Association functional class, comorbidities, and clinical events of 78 patients (median [interquartile range], 59 [51-66.3] years, 28.2% male) who underwent TV surgery for functional TR were comprehensively reviewed. Cox proportional hazards analyses were performed to assess the associations of clinical and imaging parameters with MACCEs and all-cause mortality. Results: For the median follow-up duration of 5.4 years (interquartile range, 1.2-6.6), MACCEs and all-cause mortality were 51.3% and 23.1%, respectively. The right ventricular (RV) end-systolic volume index (ESVI) and the systolic RV mass index (RVMI) were higher in patients with MACCEs than those without them (77 vs. 68 mL/m2, p = 0.048; 23.5 vs. 18.0%, p = 0.011, respectively). A high RV ESVI was associated with all-cause mortality (hazard ratio [HR] per value of 10 higher ESVI = 1.10, p = 0.03). A high RVMI was also associated with all-cause mortality (HR per increase of 5 mL/m2 RVMI = 1.75, p < 0.001). After adjusting for age and sex, only RVMI remained a significant predictor of MACCEs and all-cause mortality (p < 0.05 for both). After adjusting for multiple clinical variables, RVMI remained significantly associated with all-cause mortality (p = 0.005). Conclusion: RVMI measured on preoperative cardiac MRI was an independent predictor of long-term outcomes in patients who underwent TV surgery for functional TR.

Analysis of fMRI Signal Using Independent Component Analysis (Independent Component Analysis를 이용한 fMRI신호 분석)

  • 문찬홍;나동규;박현욱;유재욱;이은정;변홍식
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.2
    • /
    • pp.188-195
    • /
    • 1999
  • The fMRI signals are composed of many various signals. It is very difficult to find the accurate parameter for the model of fMRI signal containing only neural activity, though we may estimating the signal patterns by the modeling of several signal components. Besides the nose by the physiologic motion, the motion of object and noise of MR instruments make it more difficult to analyze signals of fMRI. Therefore, it is not easy to select an accurate reference data that can accurately reflect neural activity, and the method of an analysis of various signal patterns containing the information of neural activity is an issue of the post-processing methods for fMRI. In the present study, fMRI data was analyzed with the Independent Component Analysis(ICA) method that doesn't need a priori-knowledge or reference data. ICA can be more effective over the analytic method using cross-correlation analysis and can separate the signal patterns of the signals with delayed response or motion related components. The Principal component Analysis (PCA) threshold, wavelet spatial filtering and analysis of a part of whole images can be used for the reduction of the freedom of data before ICA analysis, and these preceding analyses may be useful for a more effective analysis. As a result, ICA method will be effective for the degree of freedom of the data.

  • PDF

Neuro-Anatomical Evaluation of Human Suitability for Rural and Urban Environment by Using fMRI (자연과 도시환경의 인체친화성에 대한 신경해부학적 평가: 기능적 자기공명영상법)

  • Kim, Gwang-Won;Song, Jin-Kyu;Jeong, Gwang-Woo
    • Progress in Medical Physics
    • /
    • v.22 no.1
    • /
    • pp.18-27
    • /
    • 2011
  • The purpose of this study was to identify different cerebral areas of the human brain associated with rural and urban picture stimulation using a 3.0 Tesla functional magnetic resonance imaging (fMRI) and further to investigate the human suitability for rural and urban environments. A total of 27 right-handed participants (mean age: $27.3{\pm}3.7$) underwent fMRI study on a 3.0T MR scanner. The brain activation patterns were induced by visual stimulation with each rural and urban sceneries. The participants were divided into two groups as 26 subjects favorable to rural scenery and 14 subjects unfavorable to urban scenery based on their filled-in questionnaire. The differences of the brain activation in response to two extreme types of pictures by the two sample t-test were characterized as follows: the activation areas observed in rural scenery over urban were the insula, middle frontal gyrus, precuneus, caudate nucleus, superior parietal gyrus, superior occipital gyrus, fusiform gyrus, and globus pallidus. In urban scenery over rural, the inferior frontal gyrus, parahippocampal gyrus, postcentral gyrus, superior temporal gyrus, amygdala, and posterior cingulate gyrus were activated. The fMRI patterns also clearly show that rural scenery elevated positive emotion such as happiness and comfort. On the contrary, urban scenery elevated negative emotion, resulting in activation of the amygdala which is the key region for the feelings of fear, anxiety and unpleasantness. This study evaluated differential cerebral areas of the human brain associated with rural and urban picture stimulation using a 3.0 Tesla fMRI. These findings will be useful as an objective evaluation guide to human suitability for ecological environments that are related to brain activation with joy, anger, sorrow and pleasure.

Quantitative Evaluation of the Corticospinal Tract Segmented by Using Co-registered Functional MRI and Diffusion Tensor Tractography (정상인에서 기능적 뇌 자기공명영상과 확산텐서영상 합성기법을 이용한 피질척수로의 위치에 따른 정량적 분석)

  • Jang, Sung-Ho;Hong, Ji-Heon;Byun, Woo-Mok;Hwang, Chang-Ho;Yang, Dong-Seok
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.40-46
    • /
    • 2009
  • Purpose : The purpose of this study was to investigate the quantitative evaluation of the corticospinal tract (CST) at the multiple levels by using functional MRI (fMRI) co-registered to diffusion tensor tractography (DTT). Materials and Methods : Ten normal subjects without any history of neurological disorder participated in this study. fMRI was performed at 1.5 T MR scanner using hand grasp-release movement paradigm. DTT was performed by using DtiStudio on the basis of fiber assignment continuous tracking algorithm (FACT). The seed region of interest (ROI) was drawn in the area of maximum fMRI activation during the motor task of hand grasp-release movement on a 2-D fractional anisotropy (FA) color map, and the target ROI was drawn in the cortiocospinal portion of anterior lower pons. We have drawn five ROIs for the measurement of FA and apparent diffusion coefficient (ADC) along the corona radiata (CR) down to the medulla. Results : The contralateral primary sensorimotor cortex (SM1) was mainly found to be activated in all subjects. DTT showed that tracts originated from SM1 and ran to the medulla along the known pathway of the CST. In all subjects, FA values of the CST were higher at the level of the midbrain and posterior limb of internal capsule (PLIC) than the level of others. Conclusion : Our study showed that co-registered fMRI and DTT has elucidated the state of CST on 3-D and analyzed the quantitative values of FA and ADC at the multiple levels. We conclude that co-registered fMRI and DTT may be applied as a useful tool for clarifying and investigating the state of CST in the patients with brain injury.

  • PDF

Assessment of Abnormality in Skeletal Muscle Metabolism in Patients with Chronic Lung Desease by $^{31}P$ Magnetic Resonance Spectroscopy ($^{31}P$ 자기 공명분석법을 이용한 만성 폐질환 환자에서의 골격근대사 이상에 관한 연구)

  • Cho, Won-Kyoung;Kim, Dong-Soon;Lim, Tae-Hwan;Lim, Chae-Man;Lee, Sang-De;Koh, Youn-Suck;Kim, Woo-Sung;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.3
    • /
    • pp.583-591
    • /
    • 1997
  • The functional derangement of skeletal muscles which may be attributed to chronic hypoxia has been accepted as a possible mechanism of exercise impairment in patients with chronic obstructive pulmonary disease (COPD). The metabolic changes in skeletal muscle in patients with COPD are characterized by impaired oxidative phosphorylation, early activation of anaerobic glycolysis and excessive lactate and hydrogen ion production with exercise. But the cause of exercise limitation in patients with chronic lung disease without hypoxia has not been known. In order to evaluate the change in the skeletal muscle metabolism as a possible cause of the exercise limitation in chronic lung disease patients without hypoxia, we compared the muscular metabolic data of seven male patients which had been derived from noninvasive $^{31}P$ magnetic resonance spectroscopy(MRS) with those of five age-matched normal male control persons. $^{31}P$ MRS was studied during the sustained isometric contraction of the dominant forearm flexor muscles up to the exhaustion state and the recovery period. Maximal voluntary contraction(MVC) force of the muscle was measured before the isometric exercise, and the 30% of MVC force was constantly loaded to each patient during the isometric exercise. There were no differences of intracellular pH (pHi) and inorganic phosphate/phosphocreatine(Pi/PCr) at baseline, exhaustion state and recovery period between two groups. But pHi during the exercise was lower in patients group than the control group (p < 0.05). Pi/PCr during the exercise did not show significant difference between two groups. These results suggest that the exercise limitation in chronic lung disease patients without hypoxia also could be attributed to the abnormalities in the skeletal muscle metabolism.

  • PDF