• Title/Summary/Keyword: Magnetic recording

Search Result 367, Processing Time 0.028 seconds

Signal Processing for Perpendicular Recording Systems

  • Lee, Jun;Woo, Choong-Chae
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.70-75
    • /
    • 2011
  • Longitudinal recording has been the cornerstone of all two generations of magnetic recording systems, FDD and HDD. In recent, perpendicular recording has received much attention as promising technology for future high-density recording system Research into signal processing techniques is paramount for the issued storage system and is indispensable like longitudinal recording systems. This paper focuses on the performance evaluation of the various detectors under perpendicular recording system. Parameters for improving the their performance are examined for some detectors. Detectors considered in this work are the partial response maximum likelihood (PRML), noise-predictive maximum likelihood (NPML), fixed delay tree search with decision feedback (FDTS/DF), dual decision feedback equalizer (DDFE) and multilevel decision feedback equalizer (MDFE). Their performances are analyzed in terms of mean squared error (MSE) and noise power spectra, and similarity between recording channel and partial response (PR) channel.

Magnetic Properties of FePt:C Nanocomposite Film

  • Ko, Hyun-Seok;A. Perumal;Shin, Sung-Chul
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.220-221
    • /
    • 2003
  • Equiatomic FePt and CoPt alloy thin films have received considerable attention as possible magnetic and magneto-optic recording because of their high magnetic anisotropy energy and high coercivity. The high coercivity in these thin films is due to the presence of finely dispersed ordered FePt phase mixed with disordered FePt phase. However, a high temperature treatment, either substrate heating during deposition or post annealing, is needed to obtain the ordered L1$\_$0/ phase with high value of magneto crystalline anisotropy. Recent microstructural studies on these films suggest that the average grain size ranges from 10-50 nm and the grains are magnetically coupled between each other. On the other hand, the ultrahigh-density magnetic recording media with low media noise imposes the need of a material, which consists of magnetically isolated grains with size below 10 nm. The magnetic grain isolation can be controlled by the amount of additional non-magnetic element in the system which determines the interparticle separation and therefore the interparticle interactions. Recently, much research work has been done on various non-magnetic matrices. Preliminary studies showed that the samples prepared in B$_2$O$_3$ and Carbon matrices have shown strong perpendicular anisotropy and fine grain size down to 4nm, which suggest these nanocomposite films are very promising and may lead to the realization of a magnetic medium capable of recording densities beyond 1 Tb/in$^2$. So, in this work, the effect of Carbon doping on the magnetic properties of FePt nanoparticles were investigated.

  • PDF

Simulation of Temperature Distribution and Readout Signal of Magnetic Amplifying Magnetooptical System (도메인 확장형 광자기 디스크의 온도분포 및 재생신호 시뮬레이션)

  • Yang, Jae-Nam;Jo, Soon-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.2
    • /
    • pp.65-70
    • /
    • 2004
  • Read out signal and temperature distribution of magnetic amplifying magnetooptical disk were studied. Temperature distribution of recording layer and adjacent layers were calculated when the disk was at rest. Mark size, length and location were simulated from a chain of recording beam pulses. In addition, signal amplitude depending on the shape of the marks, readout signals from the recording layer and amplified marks of the readout layer, were simulated. Simplified thermal conduction model was used to calculate the temperature distribution of recording and adjacent layers as a function of time as well as to calculate the mark size, length and location. Readout signal was calculated by the convolution of the disk reflectivity and the Gaussian beam intensity. Readout signal from the mark in the readout layer amplified to the size of the laser beam fumed out to be twice as large as the signal from the crescent shaped mark in the recording layer.

Properties of CoCrTa Thin Film Introduce Two Step methode and Amorphous Si Under Layer for Perpendicular Magnetic Recording Media (Two Step방식과 아몰퍼스 Si 하지층 도입에 따른 수직자기기록 매체용 CoCrTa 박막의 특성 평가)

  • Park, Won-Hyo;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.550-552
    • /
    • 2003
  • We prepared $Co_{77}Cr_{20}Ta_3$ Magnetic layer for perpendicular magnetic recording media with introduce Two-step methode and Amorphous Si Underlayer on slide glass substrate. The thickness of magnetic layer were 100nm, and Underlayer were varied from 5 to 100 nm. The multi layer Properties of crystal structure were examined with XRD. Prepared thin films showed improvement of dispersion angle of c-axis orientation ${\Delta}{\theta}_{50}$ caused by inserting Buffer-layer and amorphous Si underlayer.

  • PDF

Effect of structural change on the magnetostriction coefficient in the CoCrPt alloy thin films

  • Im, Mi-Young;Jeong, Jong-Ryul;Shin, Sung-Chul
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.178-179
    • /
    • 2002
  • CoCrPt alloy films are one of the most promising candidates for high-density perpendicular magnetic recording media due to their strong perpendicular magnetic anisotropy (PMA) and high coercivity [1]. In order to achieve high-density magnetic recording media, it is essential to characterize the magnetoelastic properties since experimental and theoretical research has revealed a significant magnetoelastic contribution to the magnetic properties in magnetic thin films. (omitted)

  • PDF

The Improvement of Magnetic Properties of CoCr Thin Film for Perpendicular Magnetic Recording Media (수직자기기록매체용 CoCr박막의 자기적 특성 개선에 관한 연구)

  • 공석현;손인환;최형욱;최동진;김경환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.419-422
    • /
    • 1999
  • We prepared CoCr thin film for perpendicular magnetic recording media by facing targets sputtering system(FTS system) which can deposit a high quality thin films in plasma-free state and wide range of working pressure. In this study, we investigated that the effect of sputtering condition , that Argon gas pressure and substrate temperature, on magnetic and crystallographic characteristic of CoCr thin film as well as the variation perpendicular coercivity in changing of film's thickness. Crystallographic and magnetic characteristic of prepared thin films were evaluated by x-ray fractometry(XRD), vibrating sample magnetometer(VSM) and kerr hysteresis loop measurement.

  • PDF

The Effect of Thickness and Underlayer on Crystallographic Properties of Co-Cr Thin Films (CoCr 박막의 결정성에 미치는 두께 및 하지층의 영향)

  • Choi, Sung-Min;Kim, Jae-Hwan;Keum, Min-Jong;Kim, Kyung-Hwan;Nakagawa, Nakagawa;Naoe, M.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1447-1449
    • /
    • 1998
  • The c-axis orientation plays a very important role in controlling the main parameters of the perpendicular magnetic recording media, such as perepndicular magnetic anisotropy field $H_{K{\bot}}$, the ratio of coercive force $H_{C{\bot}}/H_{C//}$, the recording density $D_{50}$, and the dispersion of the c-axis orientation $\Delta\theta_{50}$, which is quite important for the performance as perpendicular recording media, as well as the magnetic properties of the film. In this study, the essential process requirement for preparing the Co-Cr films with the superior c-axis orientation, the dependence of $\Delta\theta_{50}$ and the magnetic properties on the film thickness $\delta$, and the effect of underlayer on the dispersion of c-axis orientation have been investigated for both the FTS and DCM system.

  • PDF