• Title/Summary/Keyword: Magnetic powders

Search Result 354, Processing Time 0.031 seconds

Rapidly Solidified Fe-6.5wt% Si Alloy Powders for High Frequency Use

  • Park, Seung-Dueg;Yang, Choong-Jin
    • Journal of Magnetics
    • /
    • v.2 no.1
    • /
    • pp.12-15
    • /
    • 1997
  • Fe-(3∼6.5wt%) Si alloy powders having a high magnetic induction(Bs) and a low core loss value for high frequency use were obtained by an extractive melt spinning as well as a centrifugal atomization technique. Sintered core rings made by the rapidly solidified Fe-6.5wt% Si powders exhibited the high frequency magnetic properties : megnetic induction(B8) of 1.23 T, coercivity(Hc) of 0.12 Oe, relative permeability(${\mu}$a) of 6321, and core loss(W10/50) of 1.27 W/kg from the rings of 1.1 mm thick. The magnetic induction values were found to be almost identical to those of non-oriented Fe-6.5wt% Si steel sheet and double the value of 6.5wt% Si sheet prepared by the CVD technique. The high frequency core losses(W) up to 10 kHz(W10/10k) were measured to be competitive to those of grain-oriented Fe-6.5wt% Si steel sheet.

  • PDF

Synthesis Of Nd2Fe14B Powders by Spray-Drying and Reduction-Diffusion Process (분무건조와 환원-확산 공정에 의한 Nd2Fe14B 분말의 합성)

  • 최철진;허민선;박병연;김성덕;하국현;김병기;박용호
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.436-442
    • /
    • 2003
  • The magnetic Nd-Fe-B powders were prepared by a thermochemical method, consisting of the processes of spray-drying, debinding, milling, H$_2$-reduction, Ca-reduction, and washing. The optimum process conditions were studied by microstructural and thermal analysis. The resultant Nd-Fe-B powder was spherical with the size of 1 ${\mu}{\textrm}{m}$. Effects of the process parameters of each step on the microstructure of the powders were investigated, and their magnetic properties were evaluated.

Characteristics of Magnetic Polishing with Magnetic Abrasive Powder Fabricated by Plasma Melting Method (플라즈마 용융법으로 제조된 Fe계 자성분말의 자기연마 특성)

  • 이영란;배승열;안인섭;이용철
    • Journal of Powder Materials
    • /
    • v.8 no.1
    • /
    • pp.20-25
    • /
    • 2001
  • Most of mold manufacturing procedures have been automated by the introduction of NC machine tool and CAD/CAM system. But the three-dimensional surface curvature of the mold must be done by hand work of well-skilled workers. Magnetic abrasive polishing powders were investigated for surface polishing for 3D curvature. This study aims to investigate homogeneously distributed hard phase in Fe matrix and strong bonding between Fe-matrix and hard phase. The NbC powder, $B_4C$ powder and $Al_2O_3$ powder were mixed in Fe-matrix respectively. Mixed Fe-hard phase powders were compacted by press and then these were melted by plasma melting. According to SEM, XRD and OM observation, Fe-NbC magnetic abrsive powder had the most homogeneous distribution and strong bonding. As a result of magnetic polishing, the surface roughness before magnetic polishing, 1 ${\mu}m$ $R_{max}$, was reduced to 0.2 ${\mu}m$ $R_{max}$ over the entire inner surface of the tube.

  • PDF

Fabrication and Dynamic Consolidation Behaviors of Rapidly Solidified Mg Alloy Powders (급속응고 Mg 합금분말의 제조 및 동적성형특성)

  • Chae, Hong-Jun;Kim, Young-Do;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.18 no.4
    • /
    • pp.340-346
    • /
    • 2011
  • In order to improve the weak mechanical properties of cast Mg alloys, Mg-$Zn_1Y_2$ (at%) alloy powders were synthesized using gas atomization, a typical rapid solidification process. The powders consist of fine dendrite structures less than 3 ${\mu}m$ in arm spacing. In order to fabricate a bulk form, the Mg powders were compacted using magnetic pulse compaction (MPC) under various processing parameters of pressure and temperature. The effects of the processing parameters on the microstructure and mechanical properties were systematically investigated.

The Characteristics of Magnetic of Ni-Zn Ferrite dependent on pH (pH에 따른 Ni-Zn 페라이트의 자기적 특성)

  • 김한근;사공건
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.124-127
    • /
    • 1993
  • In this paper, the magnetic properties of Ni-Zn ferrite powders dependent on pH have been studied. Ni-Zn ferrite powders were synthesized by coprecipitation method(pH were 7. 9. 11 and 13. respetively) using FeCl$_3$$.$ 6H$_2$O, NiCl$_2$$.$6H$_2$O and ZnCl$_2$as starting materials and its powders were calcined at 1,000($^{\circ}C$). The saturated magnetizations of the Ni-Zn ferrite powders dependent on various pH. such as 7, 9, 11 and 13 were 11.44, 29.77, 69.62 and 66.75(emu/g), respetively.

  • PDF

Numerical Analysis on the Collision Behaviors of in-flight Droplets During Gas Atomization (가스 분무 시 비행 액적의 충돌 현상에 관한 수치적 고찰)

  • Seok, Hyun Kwang
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.506-515
    • /
    • 2008
  • Recently, it is exceedingly required to produce metal powders with tailored shape and phase altogether in order to fabricate high performance functional parts such as magnetic core or electro-magnetic noise suppressor for high frequency usage. Therefore, the collision phenomena of in-flight droplets against chamber wall or neighboring in-flight droplets each other is investigated by a computational method in order to get useful information about how to design the atomizing system and how to tailor process parameters not to make irregular-shaped powders during gas atomization process. As a results, smaller powders, lower melt temperature are known to be favorable for droplets not to collide against chamber wall. In additions, powders of narrower size distribution range, lower droplet generation rate, lower melt temperature, lower gas velocity are desirable to prevent droplet-collisions against neighboring in-flight droplets.

Size Control of Nd-Fe-B Precursor Particles Prepared by Spray Drying and Its Effect on the Magnetic Properties of Nd-Fe-B Alloy Powders after Reduction-Diffusion (분무건조된 Nd-Fe-B 전구체 입자의 크기조절 및 환원-확산 후 자기 특성에 미치는 영향)

  • Baek, Youn-Kyoung;Seo, Young-Taek;Lee, Jung-Goo;Kim, Dong Su;Bae, Dong Sik;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.20 no.5
    • /
    • pp.359-365
    • /
    • 2013
  • In this study, we fabricated $Nd_2Fe_{14}B$ hard magnetic powders with various sizes via spray drying combined with reduction-diffusion process. Spray drying is widely used to produce nearly spherical particles that are relatively homogeneous. Thus, the precursor particles were prepared by spray drying using the aqueous solution containing Nd salts, Fe salts and boric acid with the target stoichiometric composition of $Nd_2Fe_{14}B$. The mean particle sizes of the spray-dried powders are in the range from one to seven micrometer, which are adjusted by controlling the concentrations of precursor solutions. After debinding the as-prepared precursor particles, ball milling was also conducted to control the particle sizes of Nd-Fe-B oxide powders. The resulting particles with different sizes were subjected to subsequent treatments including hydrogen reduction, Ca reduction and washing for CaO removal. The size effect of Nd-Fe-B oxide particles on the formation of $Nd_2Fe_{14}B$ phase and magnetic properties was investigated.

Chemical Solution Mixing and Hydrogen Reduction Method for Fabrication of Nanostructured Fe-Co Alloy Powders (화학용액 혼합과 수소환원법을 이용한 나노구조 Fe-Co 합금분말의 제조)

  • 박광현;박현우;이백희;장시영;이정근;김영도
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.137-142
    • /
    • 2004
  • In this study, chemical solution mixing and hydrogen reduction method was used to fabricate nanostructured $Fe_xCo_{1-x}$ alloy powders. Fe-Co chloride mixture, FeCl$_2$ and COCI$_2$ with 99.9% purity, were reduced in hydrogen atmosphere. Nanostructured Fe-Co alloy powders with a grain size of 50 nm were successfully fabricated. Magnetic properties of fabricated $Fe_xCo_{1-x}$(x=0, 10, 30, 50, 70, 100) alloy powders with the same grain size were measured because size factor can affect magnetic properties. Coercivity of Fe-Co alloy powders were increased with increasing Co contents. Maximum value of coercivity in various Co contented Fe-Co alloy powders with similar grain size was 125 Oe at Fe$_{100}$. Saturation magnetization value at Fe$_{70}$Co$_{30}$ composition showed maximum value of 219 emu/g and saturation magnetization value decreased with increasing Co contents and minimum value of 155 emu/g was observed at Co$_{100}$.

Consolidation of Powders by magnetic pulsed compaction (자기펄스 가압 성형장치를 이용한 분말성형)

  • Kim, Jun-Ho;Kim, Hyo-Seob;Koo, Jar-Hyung;Lee, Jeong-Koo;Rhee, Chang-Kyu;Hong, Soon-Jik
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.390-393
    • /
    • 2008
  • In this research, we introduce a new process for the consolidation of different types of powders such as metal and ceramic powders by using a magnetic pulsed compaction (MPC). The successful consolidation of many kinds of powers including nanopowder by MPC has been presented. A wide range of experimental studies were carried out for characterizing mechanical properties and microstructure of the MPCed materials. It was found that effective properties of high strength and full density maintaining nanoscal microstructure were achieved. finally, optimization of the compaction parameters and sintering conditions could lead to the good consolidation of powders (metal, ceramic, nano-powder) with higher density, and even further enhanced mechanical properties.

  • PDF

Effects of Powder Size and Ball-milling Time on the Magnetic Properties of $Fe_{73}Si_{16}B_7Nb_3Cu_1$ Nanocrystalline Alloy Powder Cores ($Fe_{73}Si_{16}B_7Nb_3Cu_1$ 나노결정합금 분말코아의 자기적 특성에 미치는 분말입도 및 볼밀링 시간의 영향)

  • Mun, Byeong-Gi;Gang, Seong-Chan;Park, Won-Uk;Son, Geun-Yong
    • 연구논문집
    • /
    • s.34
    • /
    • pp.121-129
    • /
    • 2004
  • The influence of powder size and ball-milling time on the magnetic properties of $Fe_{73}Si_{16}B_7Nb_3Cu_1$ nanocrystalline alloy powder was investigated. Flake-shaped powders were produced by pulverizing the ribbons annealed at $550^\circC$ for 1 hour. The powders were classified and consolidated into core shapes at a pressure of 18ton/$cm^2$. The initial permeability at 100kHz of the inductor core produced using $53-75\mum$ powders showed the highest value although its consolidated density showed the lowest one. The reason for the result is due to the cracking of the particles larger than $75\mum$ during the consolidation process. The ball-milling of powders for 2-4 hours improved the consolidation density and the initial permeability of the cores. The intrinsic coercivity of the powder decreased as well, resulting from the stress relief of the powder by a short-time milling.

  • PDF