• 제목/요약/키워드: Magnetic nanocomposite

검색결과 129건 처리시간 0.025초

Fabrication of Textured $Al_2O_3-Mullite-SiC$ Nano-composite by Slip Casting in a High Magnetic Field and Reaction Sintering

  • Sakka, Yoshio;Saito, Sho;Honda, Atsushi;Suzuki, Tohru S.;Moriyoshi, Yusuke
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.327-328
    • /
    • 2006
  • We have demonstrated that textured $Al_2O_3-mullite-SiC$ nanocomposites can be fabricated by slip casting followed by partial oxidation - reaction sintering of mixed suspensions of $Al_2O_3$ and SiC powders in a high magnetic field. The sintered density was changed by the degree of oxidation at 1200C and 1300C. The degree of orientation of alumina in the nanocomposite was examined on the basis of the X-ray diffraction patterns and scanning electron micrographs. It is confirmed that alumina-oriented nanocomposites were fabricated. The three-point bending strength at room temperature was observed for the nanocomposites.

  • PDF

Fabrication of Textured $Al_2O_3-Mullite-SiC$ Nano-composite by Slip Casting in a High Magnetic Field and Reaction Sintering

  • Sakka, Yoshio;Saito, Sho;Honda, Atsushi;Suzuki, Tohru S.;Moriyoshi, Yusuke
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.455-456
    • /
    • 2006
  • We have demonstrated that textured $Al_2O_3-mullite-SiC$ nanocomposites can be fabricated by slip casting followed by partial oxidation. reaction sintering of mixed suspensions of $Al_2O_3$ and SiC powders in a high magnetic field. The sintered density was changed by the degree of oxidation at 1200C and 1300C. The degree of orientation of alumina in the nanocomposite was examined on the basis of the X-ray diffraction patterns and scanning electron micrographs. It is confirmed that aluminaoriented nanocomposites were fabricated. The three-point bending strength at room temperature was observed for the nanocomposites.

  • PDF

Electroactive Conjugated Polymer / Magnetic Functional Reduced Graphene Oxide for Highly Capacitive Pseudocapacitors: Electrosynthesis, Physioelectrochemical and DFT Investigation

  • Ehsani, A.;Safari, R.;Yazdanpanah, H.;Kowsari, E.;Shiri, H. Mohammad
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권4호
    • /
    • pp.301-307
    • /
    • 2018
  • The current study fabricated magnetic functional reduced graphene oxide (MFRGO) by relying on ${FeCl_4}^-$ magnetic anion confined to cationic 1-methyl imidazolium. Furthermore, for improving the electrochemical performance of conductive polymer, hybrid poly ortho aminophenol (POAP)/ MFRGO films have then been fabricated by POAP electropolymerization in the presence of MFRGO nanorods as active electrodes for electrochemical supercapacitors. Surface and electrochemical analyses have been used for characterization of MFRGO and POAP/ MFRGO composite films. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. Prepared composite film exhibited a significantly high specific capacity, high rate capability and excellent cycling stability (capacitance retention of ~91% even after 1000 cycles). These results suggest that electrosynthesized composite films are a promising electrode material for energy storage applications in high-performance pseudocapacitors.

Modification of Silica Nanoparticles with Bis[3-(triethoxysilylpropyl)]tetrasulfide and Their Application for SBR Nanocomposite (Bis[3-(triethoxysilylpropyl)]tetrasulfide에 의한 실리카 입자의 표면개질 반응과 SBR 나노 복합체 응용)

  • Ryu, Hyun Soo;Lee, Young Seok;Lee, Jong Cheol;Ha, KiRyong
    • Polymer(Korea)
    • /
    • 제37권3호
    • /
    • pp.308-315
    • /
    • 2013
  • In this study, we performed surface modification of silica nanoparticles with bis[3-(triethoxysilylpropyl)]tetrasulfide (TESPT) silane coupling agent to study the effects of treatment temperature, treatment time, and amount of TESPT used on the silanization degree with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), elemental analysis (EA) and solid state $^{13}C$ and $^{29}Si$ cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR). We found peak area of isolated silanol groups at $3747cm^{-1}$ decreased, but peak area of $-CH_2$ asymmetric stretching of TESPT at $2938cm^{-1}$ increased with the amount of TESPT from FTIR measurements. We also used universal testing machine (UTM) to study mechanical properties of styrene butadiene rubber (SBR) nanocomposites with 20 phr (parts per hundred of rubber) of pristine and TESPT modified silicas, respectively. The tensile strength and 100% modulus of modified silica/SBR nanocomposite were enhanced from 5.65 to 9.38MPa, from 1.62 to 2.73 MPa, respectively, compared to those of pristine silica/SBR nanocomposite.

Microstructure and Magnetic Properties of Nanocomposite Sm2Fe15Ga2Cx/α-Fe Permanent Magnets

  • Cheng, Zhao-hua
    • Journal of Magnetics
    • /
    • 제8권1호
    • /
    • pp.18-23
    • /
    • 2003
  • In our previous work, microstructure and magnetic properties of two-phase exchange-coupled $Sm_2Fe_{15}Ga_2C_{x}$/$\alpha$-Fe nanocomposites have been investigated by means of x-ray diffraction, transmission electron microscopy and magnetization measurement. It was found the exchange coupling between the magnetically hard phase $Sm_2Fe_{15}Ga_2C_{x}$ and the magnetically soft one ${\alpha}$-Fe results in an enhancement of the remanence. The sizes of crystallites of both phases are, however much larger than the Block domain-wall width of the magnetically hard phase. This microstructure gives rise to a concave demagnetization curve and consequently reduces the maximum energy Product. In order to improve their magnetic properties, a few Percent of Zr, which may be effective to refine the microstructure through rapid quenching, was introduced into the nanocomposites. The addition of Zr was found to improve the magnetic properties significantly, Under optimum heat-treatment conditions, the remanence, coercivity and maximum energy Product increase from 0.65 T, 0.48 T and 50 kJ/$m^{3}$ for the Zr-free sample to 0.72 T, 0.77 T and 71.6 kJ/$m^{3}$ for the 1 at.% Zr-containing one, respectively, The improvements of magnetic properties are due to the refinement of microstructure by the addition of Zr.

Vibration response of FG-CNT-reinforced plates covered by magnetic layer utilizing numerical solution

  • Cao, Yan;Musharavati, Farayi;Baharom, Shahrizan;Talebizadehsardari, Pouyan;Sebaey, Tamer A.;Eyvazian, Arameh;Zain, Azlan Mohd
    • Steel and Composite Structures
    • /
    • 제37권2호
    • /
    • pp.253-258
    • /
    • 2020
  • Vibration response in a sandwich plate with a nanocompiste core covered by magnetic layer is presented. The core is armed by functionalyy graded-carbon nanotubes (FG-CNTs) where the Mori-Tanaka law is utilized assuming agglomeration effects. The structure plate is located on elastic medium simulated by Pasternak model. The governing equations are derived based on Mindlin theory and Hamilton's principle. Utilizing diffrential quadrature method (DQM), the frequency of the structure is calculated and the effects of magnetic layer, volume percent and agglomeration of CNTs, elastic medium and geometrical parameters of structure are shown on the frequency of system. Results indicate that with considering magnetic layer, the frequency of structure is increased.

Synthesis of $Fe/Al_2O_3$ and $Fe/TiO_2$ nanocomposite powder by mechanical alloying (기계적합금화에 의한 $Fe/Al_2O_3$$Fe/TiO_2$계 나노복합분말의 제조)

  • Lee, Seong-Hee;Lee, Chung-Hyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제19권4호
    • /
    • pp.202-207
    • /
    • 2009
  • Nanocomposite formation of metal-metal oxide systems by mechanical alloying (MA) has been investigated at room temperature. The systems we chose are the $Fe_3O_4$-M (M = AI, Ti), where pure metals are used as reducing agent. It is found that $Fe/Al_2O_3$ and $Fe/TiO_2$ nanocomposite powders in which $Al_2O_3$ and $TiO_2$ are dispersed in ${\alpha}$-Fe matrix with nano-sized grains are obtained by MA of $Fe_3O_4$ with Al and Ti for 25 and 75 hours, respectively. It is suggested that the shorter MA time for the nanocomposite formation in $Fe/Al_2O_3$ is due to a large negative heat associated with the chemical reduction of magnetite by aluminum. X-ray diffraction results show that the average grain size of ${\alpha}$-Fe in $Fe/TiO_2$ nanocomposite powders is in the range of 30 nm. The change in magnetic properties also reflects the details of the solid-state reduction of magnetite by pure metals during MA.

A Study of Magnetic Field Annealing on Microstructures and Magnetic Properties of Nanocomposite Sm-Co/Co Films

  • Yang, Choong-Jin;You, Cai-Yin;Zhang, Z.D.;Kim, Kyung-Soo;Han, Jong-Soo
    • Journal of Magnetics
    • /
    • 제7권2호
    • /
    • pp.45-50
    • /
    • 2002
  • A magnetic field annealing is firstly used for nanostructured Sm-Co/Co films, prepared by magnetron sputtering method. The effects of magnetic field annealing on single-layered Sm-Co films are different from those on multi-layered Sm-Co/Co films. A detailed analysis of microstructures and magnetic properties is made by means of HRTEM, Auger electron spectroscopy, XRD and Physical Property Measurement System (PPMS). From magnetic properties and microstructure analysis, it was confirmed that these differences originate from the effects of magnetic field annealing on crystallization behavior of the films. The relationship between magnetic properties and microstructures explains a different demagnetization process of single-layered and multilayered films. For the single-layered Sm-Co films, magnetic-field-annealing makes the main phases change from $CaCu_5/ to Zn_2Th_{17}$ structure, resulting in a decrease of coercivity. The results show that the magnetic-field-annealing is useful to improve the properties of nanostructured Sm-Co(30 nm)/Co(10 nm) films, which ascribe to improving the pinning effectiveness in coercivity mechanism and decreasing the magnetostatic interaction of films. A very high coercivity about 0.7 T was obtained from nanoscaled multi-layered Sm-Co(30 nm)-/Co(10 nm) films.