• Title/Summary/Keyword: Magnetic liquid

Search Result 417, Processing Time 0.033 seconds

Experimental study of natural convection for magnetic fluids in annular pipes (이중원관내 자성유체의 자연대류에 관한 실험적 연구)

  • Park, Joung-Woo;Lee, Jun-Hee;Seo, Lee-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.191-195
    • /
    • 2001
  • The applications of magnetic fluid can be normally made by 1) using changes of a property of matter caused by applied magnetic field; 2) preserving magnetic fluid at a certain position or in a magnetic fluid keeping the body in a floating condition; 3) controlling the flow of magnetic fluid by means of magnetic field. However, these are usually made by using their methods together. In this study, the natural convection flow of a magnetic fluid in annular pipes is experimentally analyzed. High temperature is kept constantly inside of a circular pipe of experimental model, on the other hand, low temperature is kept constantly outside of it. In experiments, several cases are carried out in order to clarify the fluence of direction and intensity of magnetic fields on the natural convection of magnetic fluid. Therefore magnetic fields are applied in various intensity and up and down directions by permanent magnets.

  • PDF

A study on the optical switch using magnetic behavior of magnetic fluids (자성유체의 자기적 거동특성을 이용한 광 스위치에 관한 연구)

  • Choi, Bum-Kyoo;Oh, Jae-Geun;Kim, Do-Hyung;Song, Kwan-Min
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.16-21
    • /
    • 2005
  • This paper presents the development of the optical switch using magnetic behavior of magnetic fluids, which is expected to be used broadly in high-speed information communication. The magnetic fluids for switching an incident light, have the magnetic characteristics of magnetic materials and fluidity of liquids, simultaneously. The relations are derived between the intensity of magnetic field and the angle of optical fiber which is bent by a behavior of magnetic fluid when the magnetic field is applied. When optical switch is implemented by the movement of liquid using magnetic fluid, the existing problem of durability for optical switch will be improved. Thus, this study shows the feasibility of the application for the optical switches using magnetic fluids.

Magnetic Field Sensor using BiPbSrCaCuO Superconductor (BiPbSrCaCuO 초전도 자기검출소자)

  • 이상헌;이성갑;이영희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.5
    • /
    • pp.429-434
    • /
    • 2003
  • The magnetic field sensor was fabricated with superconducting ceramics of BiPbSrCaCuO system. The sensor at liquid nitrogen temperature showed the increase of electrical resistance by applying magnetic field. Actually, the voltage drop across the sensor was changed from zero to a value more than 100 $\mu\textrm{V}$ by the applied magnetic field. The change of electrical resistance depended on magnetic field. The sensitivity of this sensor was 2.9 $\Omega$/T. The sensing limit was about 1.5${\times}$10$\^$-5/ T. The increase of electrical resistance by the magnetic field was ascribed to a modification of the Josephson junctions due to the penetrating magnetic flux into the superconducting material. Considering the observed properties of the superconductor with trapped magnetic flux, a magnetic sensor was fabricated to detect simultaneously both the intensity and the direction of the magnetic field.

The Effect of Transverse Magnetic field on Macrosegregation in vertical Bridgman Crystal Growth of Te doped InSb

  • Lee, Geun-Hee;Lee, Zin-Hyoung
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.522-522
    • /
    • 1996
  • An investigation of the effects of transverse magnetic field and Peltier effect on melt convection and macrosegregation in vertical Bridgman crystal grosth of Te doped InSb was been carried out by means of microstructure observation, Hall measurement, electrical resistivity measurement and X-ray analysis. Before the experiments, Interface stability, convective instability and suppression of convection by magnetic field were calculated theoretically. After doping 1018, 1019 cm-3 Te in InSb, the temperature of Bridgman furnace was set up at $650^{\circ}C$. The samples were grown in I.D. 11mm, 100mm high quartz tube. The velocity of growth was about 2${\mu}{\textrm}{m}$/sec. In order to obtain the suppression of convection by magnetic field in the middle of growth, 2-4KG magnetic field was set on the melt. For searching of the shape of solid-liquid interface and the actual velocity of crystal growth, let 2A current flow from solid to liquid for 1second every 50seconds repeatedly (Peltier effect). The grown InSb was polycrystal, and each grain was very sharp. There was no much difference between the sample with and without magnetic field at a point of view of microstructure. For the sample with Peltier effect, the Peltier marks(striation) were observed regularly as expected. Through these marks, it was found that the solid-liquid interface was flat and the actual growth velocity was about 1-2${\mu}{\textrm}{m}$/sec. On the ground of theoretical calculation, there is thermosolutal convection in the Te doped InSb melt without magnetic field in this growth condition. and if there is more than 1KG magnetic field, the convection is suppressed. Through this experiments, the effective distribution coefficients, koff, were 0.35 in the case of no magnetic field, and 0.45 when the magnetic field is 2KG, 0.7 at 4KG. It was found that the more magnetic field was applied, the more convection was suppressed. But there was some difference between the theoretical calculation and the experiment, the cause of the difference was thought due to the use of some approximated values in theoretical calculation. In addition to these results, the sample with Peltier effect showed unexpected result about the Te distribution in InSb. It looked like no convection and no macrosegregation. It was thought that the unexpected behavior was due to Peltier mark. that is, when the strong current flew the growing sample, the mark was formed by catching Te. As a result of the phenomena, the more Te containing thin layer was made. The layer ruled the Hall measurement. The values of resistivity and mobility of these samples were just a little than those of other reference. It was thought that the reason of this result was that these samples were due to polycrystal, that is, grain boundaries had an influence on this result.

  • PDF

Magnetic Properties of Oxide Superconducting Material (산화물 초전도체의 자기적 특성)

  • Lee, Sang-Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.115-118
    • /
    • 2003
  • The sensor at liquid nitrogen temperature showed the increase of electrical resistance by applying magnetic field. Actually, the voltage drop across the sensor was changed from zero to a value more than $100\;{\mu}V$ by the applied magnetic field. The change of electrical resistance depended on magnetic field. The sensitivity of this sensor was $2.9\;{\Omega}/T$. The sensing limit was about $1.5{\times}10^{-5}\;T$. The increase of electrical resistance by the magnetic field was ascribed to a modification of the Josephson junctions due to the penetrating magnetic flux into the superconducting material. Considering the observed properties of the superconductor with trapped magnetic flux, a magnetic sensor was fabricated to detect simultaneously both the intensity and the direction of the magnetic field.

  • PDF

Magnetic Sensor by Using Magnetic Effect in YBaCuO Superconductor

  • 이상헌;김찬중
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.69-71
    • /
    • 2003
  • The magnetic field sensor was fabricated with superconducting ceramics of YBaCuO system. The sensor at liquid nitrogen temperature showed the increase of electrical resistance by applying magnetic field. Actually the voltage drop across the sensor was changed from zero to a value more than 100 $mutextrm{V}$ by the applied magnetic field. The change in electrical resistance depended on magnetic field. The sensitivity of this sensor was 2.9 $\Omega$/T. The sensing limit was about $1.5\times$10$^{-5}$. The increase of electrical resistance by the magnetic field was ascribed to a modification of the Josephson junctions due to the penetrating magnetic flux into the superconducting material. Considering the observed properties of the superconductor with trapped magnetic flux, a magnetic sensor was fabricated to detect simultaneously both the intensity and the direction of the magnetic field.

  • PDF

Analysis of reflection-coefficient by wireless power transmission using superconducting coils

  • Jeong, In-Sung;Choi, Hyo-Sang;Chung, Dong-Chul
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.2
    • /
    • pp.29-32
    • /
    • 2017
  • The use of electronic devices such as mobile phones and tablet PCs has increased of late. However, the power which is supplied through wires has a limitation of the free use of devices and portability. Magnetic-resonance wireless power transfer (WPT) can achieve increased transfer distance and efficiency compared to the existing electromagnetic inductive coupling. A superconducting coil can be applied to increase the efficiency and distance of magnetic-resonance WPT. As superconducting coils have lower resistance than copper coils, they can increase the quality factor (Q-factor) and can overcome the limitations of magnetic-resonance WPT. In this study, copper coils were made from ordinary copper under the same condition as the superconducting coils for a comparison experiment. Superconducting coils use liquid nitrogen to keep the critical temperature. As there is a difference of medium between liquid nitrogen and air, liquid nitrogen was also used in the normal conductor coil to compare the experiment with under the same condition. It was confirmed that superconducting coils have a lower reflection-coefficient($S_{11}$) than the normal conductor coils.

Growth and magnetic properties of Tb, Eu, EuTb-substituted garnet single crystal films (Tb, Eu, EuTb가 치환된 가네트 단결정 막의 성장과 자기적 특성)

  • Kim G. Y;Yoon S. G.;Chung I. S;Park S. B;Yoon D. H
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.5
    • /
    • pp.193-198
    • /
    • 2004
  • Using the $PbO-B_2O_3-Bi_2O_3$ flux system, $(TbBi)_3(FeAIGa)_5O_{12}(TbIG)$, $(EuBi)_3(FeAIGa)_5O_{12}(EuIG)$ and $(EuTbBi)_3(FeAIGa)_5O_{12}(EuTbIG)$ films were grown on $(GdCa)_3(GaMgZr)_5O_{12}(SGGG)$ substrates by the liquid phase epitaxy (LPE). The saturation magnetization of the grown TbIG, EuIG and EuTbIG films was about 150, 950 and 125 Oe, respectively. The TbIG films resulted in the single magnetic domain while the EuIG and EuTbIG films were observed to be the multi magnetic domains by magnetic force microscope (MFM).

Experimental Study on Sloshing Characteristics of a Ferrofluid in the Spherical Container (구형 용기 내 자성유체의 슬로싱 특성에 관한 실험적 연구)

  • Kim, Dae-Wan;Lee, Moo-Yeon;Seo, Lee-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.5
    • /
    • pp.173-177
    • /
    • 2013
  • This work describes the experimental investigations on sloshing characteristics of water and ferrofluid as working fluids in the spherical container with the horizontal oscillation motion and compared the results obtained by two working fluids. In order to Investigate the sloshing characteristics of the sphere container with the horizontal oscillation, experiments are performed with the magnetic intensities from 0 mT to 50 mT and horizontal oscillation motions from 5 mm to 15 mm. As results, Ferrofluid without magnetic field in the sphere container showed a similar liquid surface movement with water. The resonance point of the ferrofluid in the sphere container happened at higher value than that of the theoretical resonance frequency with the rise of the magnetic field. In addition, the sloshing characteristics of the ferrofluid in the sphere container can be controlled with the resonance frequency with the magnetic intensity and the liquid surface displacement could be also controlled.

Postmortem analysis of a failed liquid nitrogen-cooled prepolarization coil for SQUID sensor-based ultra-low field magnetic resonance

  • Hwang, Seong-Min;Kim, Kiwoong;Yu, Kwon Kyu;Lee, Seong-Joo;Shim, Jeong Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.44-48
    • /
    • 2014
  • A liquid nitrogen-cooled prepolarization ($B_p$) coil made for ultra-low field nuclear magnetic resonance and magnetic resonance imaging (ULF-MR) designed to generate 7 mT/A was fabricated. However, with suspected internal insulation failure, the coil was investigated in order to find out the source of the failure. This paper reports detailed build of the failed $B_p$ coil and a number of analysis methods utilized to figure out the source and the mode of failure. The analysis revealed that pyrolytic graphite sheet linings put on either sides of the coil for better thermal conduction acted as an electrical bridge between inner and outer layers of the coil to short out the coil whenever a moderately high voltage was applied across the coil. A simple model circuit simulation corroborated the analysis and further revealed that the failed insulation acted effectively as a damping resistor of $R_{d,eff}=6{\Omega}$ across the coil. This damping resistance produced a 50 ms-long voltage tail after the coil current was ramped down, making the coil not suitable for use in ULF-MR, which requires complete removal of magnetic field from $B_p$ coil within milliseconds.