• Title/Summary/Keyword: Magnetic fluids

Search Result 185, Processing Time 0.042 seconds

LARGE EDDY SIMULATION OF VORTEXING FLOW IN THE MOLD WITH DC MAGNETIC FIELD

  • Zhongdong Qian;Yulin Wu
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.56-62
    • /
    • 2005
  • Large eddy simulation of vortexing flow of molten steel in the continuous casting mold with and without DC magnetic field was conducted. The influence of the position of magnetic field to the residence time and depth of the vortex was analyzed. The mechanism of the influence of magnetic field to the vortexing flow was found. The computational results show that the vortexing flow is the result of shearing of the two un-symmetric surface flows from the mold narrow faces when they meet adjacent to the SEN; the un-symmetric flow for turbulent vortex is caused by turbulent energy of the fluid and that for biased vortex is caused by biased flow and the turbulent energy of fluid; with the moving of the magnetic field from the centerline of the outlet of the SEN to the free surface, the surface velocity is decreased gradually and the depth of the turbulent vortex and the biased vortex is decreased, the residence time is increased with the magnetic field moves from DL=120mm to DL=60mm and then decreased; the turbulent vortex and the biased vortex can be eliminated when the magnetic field is located at the free surface.

Preparation and properties of water-based magnetic fluid with synthesized magnetite (합성마그네타이트를 이용한 수상자성유체의 제조 및 특성)

  • Kim, Mahn;Oh, Jae-Hyun;Seo, Ho-Jun;Cho, Moung-Ho;Kim, Mi-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.2
    • /
    • pp.173-178
    • /
    • 1994
  • The water-based magnetic fluids were prepared with the synthesized ultra-fine magnetite, oleic acid and SDBS (sodium dodecyl benzene sulfonate) as surfactants. The dispersion of water-based magnetic fluids was about 90 % when the added amounts of oleic acid and SDBS for magnetite(27 g) were more than $2.66{\times}10^{-3}$ mol and 10 g respectively. As the solid content increased from o. 05 g/cc to 0.4 g/cc, saturation magnetization of magnetic fluids at 5 kOe increased from 1.98 emu/g to 9.63 emu/g at $Fe^{2+}/Fe^{3+}=0.5$ and from 2.7 emu/g to 14.63 emu/g at $Fe^{2+}/Fe^{3+}=1.0$, and the its viscosity increased from 1.3 cp to 4.4 cp at $Fe^{2+}/Fe^{3+}=0.5$. pH region of oleic acid and SDBS stabilized water-based mag¬netic fluids was stable was in the range of pH 3.0 to pH 11.0. Stability of Water-based magnetic fluids can be obtained by observation of magnetic memory patterns on the VCR tape.

  • PDF

A Review on nuclear magnetic resonance logging: fundamental theory and measurements (자기공명검층: 기본 이론 및 자료 측정)

  • Jang, Jae Hwa;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.235-244
    • /
    • 2012
  • Nuclear magnetic resonance (NMR) logging has been considered one of the most complicated nevertheless, one of the most powerful logging methods for the characterization on of both rocks and natural fluids in formation. NMR measures magnetized signals (polarization and relaxation) between the properties of hydrogen nucleus called magnetic moment and applied magnetic fields. The measured data set contains two important petrophysical properties such as density of hydrogen in the fluids inside the pore space and the distinct decay rate for fluid type. Therefore, after the proper data processing, key petrophysical information, not only the quantities and properties of fluids but also supplies of rock characterization in a porous medium, could be archived. Thus, based on this information, several ongoing researches are being developed in estimating aspects of reservoir productivity information, permeability and wettability since it is the key to having correct interpretation. This study goes through the basic theory of NMR at first, and then reviews NMR logging tools as well as their technical characteristics. This paper also briefly discusses the basic knowledge of NMR simulation algorithm by using Random walk.

Design of Compact Magneto-Rheological Fluid Damper for Artificial Low-Limb Prosthesis (Magneto-Rheological Fluid를 이용한 인공지능 의족의 Compact damper 개발)

  • Sung, So-Young;Kang, S.J.;Moon, I.H.;Moon, M.S.;Jang, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2962-2964
    • /
    • 2005
  • Magneto-Rheological (MR) fluid is suspension of fine magnetic particles in a liquid carrier such as silicon oil or water. MR fluid exhibits solid-like mechanical behavior into chain or clusters with high yield stress when magnetic field is applied to the particles. The response of MR fluids is very quick and reversible after removal of the field. MR Fluids have high yield stress (up to 5kPs) and operate in low voltage power supply. Recently, MR damper using MR fluids was open used in vibration control system such as structural devices, seat vibration controllers and helicopter rotor systems, but it is too big in size and heavy. Therefore, it is not appreciate to rehabilitation devices such as prosthetic limbs.

  • PDF