• Title/Summary/Keyword: Magnetic fluid

Search Result 779, Processing Time 0.022 seconds

ON RIVLIN-ERICKSON ELASTICO-VISCOUS FLUID HEATED AND SOLUTED FROM BELOW IN THE PRESENCE OF COMPRESSIBILITY, ROTATION AND HALL CURRENTS

  • Gupta, Urvashi;Sharma, Gaurav
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.51-66
    • /
    • 2007
  • A layer of compressible, rotating, elastica-viscous fluid heated & soluted from below is considered in the presence of vertical magnetic field to include the effect of Hall currents. Dispersion relation governing the effect of viscoelasticity, salinity gradient, rotation, magnetic field and Hall currents is derived. For the case of stationary convection, the Rivlin-Erickson fluid behaves like an ordinary Newtonian fluid. The compressibility, stable solute gradient, rotation and magnetic field postpone the onset of thermosolutal instability whereas Hall currents are found to hasten the onset of thermosolutal instability in the absence of rotation. In the presence of rotation, Hall currents postpone/hasten the onset of instability depending upon the value of wavenumbers. Again, the dispersion relation is analyzed numerically & the results depicted graphically. The stable solute gradient and magnetic field (and corresponding Hall currents) introduce oscillatory modes in the system which were non-existent in their absence. The case of overstability is discussed & sufficient conditions for non-existence of overstability are derived.

An experimental study on resonance reduction of system with one degree of freedom by magneticfluid (자성 유체를 이용한 1자유도 계의 공진멸소에 관한 실험적 연구)

  • Chun, U. H.;Lee, B. G.;Hwang, S. S.;Lee, H. S.;Kim, J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.131-137
    • /
    • 1999
  • Under magnetism , as the magneticfluid is being itself magnetized, increase the apparent viscosity because of its body force and has the magnetic characteristics in response ot magnetism, the magnetic fluid is getting attention in various field. The magnetic fluid has the fluidity, which is a special characteristics of fluid and the magneticism , which is a special one of solid. Using this characteristics, this study has been proceeded to show the basic data for developing of a viscous damper with magnetism fluid as hydraulic fluid. Experimental study shows that the application of magnetic field is effective reducing the resonance characteristics of the spring-mass system.

  • PDF

Rotordynamic Analysis and Experimental Investigation of the Turbine-Generator System Connected with Magnetic Coupling (마그네틱 커플링으로 연결된 터빈-발전기 시스템의 로터다이나믹 해석 및 실험적 고찰)

  • Kim, Byung Ok;Park, Moo Ryong;Choi, Bum Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.3
    • /
    • pp.32-38
    • /
    • 2013
  • This paper deals with the study on the rotordynamic and experimental analysis of turbine-generator system connected with a magnetic coupling. Although magnetic coupling has been used to torque transmission of chemical processing pump rotating at under 3,600rpm, magnetic coupling in this study is applied to high-speed turbine-generator system using a working fluid that is refrigerant such as ammonia or R-124a. Results of rotordynamic design analysis are as follows. The first, shaft diameter nearest to outer hub of magnetic coupling has a big effect on the $1^{st}$ critical speed of generator rotor. The second, if the $1^{st}$ critical speeds of turbine rotor and generator rotor have enough to separation margin in comparison to rated speed, the $1^{st}$ critical speed of turbine-magnetic coupling-generator rotor train has enough to separation margin regardless of connection stiffness of magnetic coupling. The analytical FE model is guaranteed by impact test on the prototype and condition monitoring such as measurements of vibration and bearing temperature is also performed.

Electromagnetic Design and Performance Evaluation of an MR Valve (MR 밸브의 전자기적 설계와 성능평가)

  • Kim, Ki-Han;Nam, Yun-Joo;Park, Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.240-249
    • /
    • 2008
  • This paper presents an electromagnetic design method for magneto-rheological (MR) valves. Since the apparent viscosity of MR fluids is adjusted by applying magnetic fields, the MR valves can control high-level fluid power without any mechanical moving parts. In order to improve the performances of the MR valve, it is important that the magnetic field is effectively supplied to the MR fluid. For the purpose, the magnetic circuit composed with the yoke for forming magnetic flux path, the electromagnetic coil and the MR fluid should be well designed. In order to improve the static characteristic of the MR valve, the length of the magnetic flux path is decreased by removing the unnecessary bulk of the yoke. Also, in order to improve its dynamic and hysteretic characteristics, the magnetic reluctance of the magnetic circuit should be increased by minimizing the cross-sectional area of the yoke through which the magnetic flux passes. After two MR valves, one is a conventional type valve and the other is the proposed one, are designed and fabricated, their performances are evaluated experimentally.

Re-dispersion Characteristics of Waster-Based Magnetic Fluids Using Oleic Acid and Saturated Fatty Acid $(C_9-C_11)$ System - Preparation and Redispersion Characteristics of Water-Based Magnetic Fluid With the Synthesized Magnetite(3) (오레인산-포화지방산$(C_9-C_11)$으로 제조한 수상자성유체의 재분산성 -합성 마그네타이트에 의한 수상자성유체의 제조 및 재분산 특성에 관한 연구(3))

  • Kim, Mahn;Oh, Jae-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.723-730
    • /
    • 1994
  • Stable aqueous dispersion of magnetite colloid was obtained by allowing a fatty acid, such as nonanoic acid, decanoic acid and undecanoic acid, dissociated with NH4OH solution to adsorb on the monomolecular adsorption of oleate. To obtain a stable dispersion, added amounts of sodium oleate and nonanoic acid for magnetite 20g were more than 2.63$\times$10-2 mol and 0.04 mol respectively. In this colloid, good dispersions of magnetite which is sterically stabilized in aqueous system were achieved about pH 7.7. Water-based magnetic fluids using in this study were able to redisperse to water-based magnetic fluids by adding NH4OH solution to dried water-based magnetic fluid powders. Changing a magnetic fluid carrier such as kerosene was also attemped by adding kerosene to dried water-based magnetic fluid powders. In this study, we can obtain a kerosene-based magnetic fluids using drying process.

  • PDF

Thermal-flow Characteristics of Magnetic Fluid for Concentric Annuli Under Fixing Magnetic Field Using Visualization Technique (가시화기법을 이용한 고정자장에서 이중원관내 자성유체의 열유동 특성에 관한 연구)

  • Kim, Hyung-Jin;Seo, Jae-Hyeong;Kim, Dae-Wan;Lee, Moo-Yeon;Seo, Lee-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.1
    • /
    • pp.26-30
    • /
    • 2013
  • This article is experimentally to investigate thermal-flow characteristics of the magnetic fluid for concentric annuli under externally fixed magnetic fields using visualization technique. Temperatures of the inner tube and outer tube in the tested concentric annuli were constantly maintained at both $30^{\circ}C$ and $25^{\circ}C$ and the middle tube was filled with the magnetic fluid. Magnetic field was uniformly applied using 4 permanent magnets at 4 directions of the concentric annuli. As a result, the thermal-flow characteristics of the magnetic fluid for concentric annuli could be controlled by directions of the external magnetic fields.

Numerical Study on the Magnetic Flux Distribution of a Magnetic Fluid Seal (자성유체시일의 자속분포에 관한 수치적 연구)

  • 김청균;차백순;민진기;정성천
    • Tribology and Lubricants
    • /
    • v.14 no.3
    • /
    • pp.32-38
    • /
    • 1998
  • This paper presents the magnetic flux distributions of a ferrofluid seal at the sealing gap between the pole pieces and the rotating shaft. The optimized shape of pole pieces has been determined by using the computer simulations. The computed results indicate that the sloped pole piece of 27$^{\circ}$ shows good flux distributions compared with that of the conventional flat pole pieces and may reduce frictional heats due to a reduced surface contact areas of magnetic fluids.

Identification of Dynamic property of Squeeze Film Damper Using Magnetic Fluid (자성유체를 이용한 스퀴즈 필름 댐퍼의 동특성 동정)

  • Ahn, Young Kong;Ha, Jong-Yong;Kim, Yong-Han;Ahn, Kyoung Kwan;Yang, Bo-Suk;Morishita, Shin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.227-230
    • /
    • 2005
  • The paper presents the identification of dynamic property of a rotor system with a squeeze film damper (SFD) using magnetic fluid. An electromagnet is installed in the inner damper of the SFD. The magnetic fluid is well known as a functional fluid. Its rheological property can be changed by controlling the applied current to the fluid and the fluid can be used as lubricant. Basically, the proposed SFD has the characteristics of a conventional SFD without an applied current, while the damping and stiffness properties change according to the variation of the applied electric current. Therefore, when the applied current is changed, the whirling vibration of the rotor system can be effectively reduced. The clustering-based hybrid evolutionary algorithm (CHEA) is used to identify linear stiffness and damping coefficients of the SFD based on measured unbalance responses.

  • PDF

Investigation of Dynamic Property of Squeeze Film Damper Using Magnetic Fluid (자성유체를 이용한 스퀴즈 필름 댐퍼의 동특성 분석)

  • Ha, Jong-Yong;Kim, Yong-Han;Yang, Bo-Suk;Morishita Shin;Ahn, Kyoung-Kwan;Ahn, Young-Kong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1262-1267
    • /
    • 2005
  • The paper presents the identification of dynamic property of a rotor system with a squeeze film damper (SFD) using magnetic fluid. An electromagnet Is installed in the inner damper of the SFD. The magnetic fluid is well known as a functional fluid. Its rheological property can be changed by controlling the applied current to the fluid and the fluid can be used as lubricant. Basically, the proposed SFD has the characteristics of a conventional SFD without an applied current, while the damping and stiffness Properties change according to the variation of the applied electric current. Therefore, when the applied current is changed, the whirling vibration of the rotor system can be effectively reduced. The clustering-based hybrid evolutionary algorithm (CHEA) is used to identify linear stiffness and damping coefficients of the SFD based on measured unbalance responses.

Dispersion Characteristics Water-Based Magnetic Fluids Using Oleic Acid - Preparation and Re-Dispersion Characteristics of Water-Based Magnetic Fluid with Synthesized Magnetite(2) (오레인산에 의한 수상자성유체의 분산특성 - 합성마그네타이트에 의한 수상자성유체의 제고 및 재분산특성에 관한 연구(2))

  • Oh, Jae-Hyun;Kim, Sam-Ill;Kim, Mahn;Lee, Hong-lim
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.3
    • /
    • pp.298-304
    • /
    • 1994
  • Water-based magnetic fluids were made of the synthesized ultrafine magnetite with surfactants such as sodium oleate and loeic acid. The water-based magnetic fluid was prepared under the condition that added amounts of sodium oleate and oleic acid dissolved with NH4OH were 2.64$\times$10-2 mol, 1.5~2.0$\times$10-2 mol respectively. The water-based magnetic fluid was stable and should be dispersed well dispersion in the range of pH 9.0 to pH 11.0. As the solid content increased from 0.05 g/cc to 0.4 g/cc, the viscosity of water-based magnetic fluids increased from 2.5 cP to 152 cP and their magnetization at 5 KOe linearly increased from 3.1 emu/g to 26 emu/g. The aggregated powder after drying the water-based magnetic fluid was also successfully re-dispersed in dilute NH4OH solution and in kerosene.

  • PDF