• Title/Summary/Keyword: Magnetic fluid

Search Result 779, Processing Time 0.03 seconds

Characteristic Analysis of the Magnetic Fluid Seal considering the Shape of the Pole Piece (자성유체 밀봉시스템의 치 형상에 따른 내압 특성해석)

  • 김동훈;한송엽;박관수;이기식
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.1
    • /
    • pp.56-61
    • /
    • 1994
  • Magnetic fluid is ferromagnetic material in liquid state, so the surface configuration of magnetic fluid affects the magnetic field, and vice versa. To analyze the devices with magnetic fluid, the magnetic field equations and hydrodynamic equation should be solved simultaneously. This paper presents the numerical algorithm to obtain the surface configuration of fluid under the influence of gravity, pressure and magnetic field without conventional sim¬plified assumption. The algorithm consists of nonlinear finite element method and ferro-hydrodynamics, such as Poisson equations and Bernoulli equations, respectively The simulated configurations of fluid are compared with experimental results, and the influence of the amount of fluid and pole piece shape on the seal capacities are analyzed.

  • PDF

A Study On the Friction Torque and Temperature Distribution of Magnetic Fluid Seals (자성유체시일의 마찰토크와 온도분포 해석에 관한 연구)

  • Kim, Chung-Kyun;Kim, Han-Goo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.53-61
    • /
    • 1997
  • The performance characteristics of magnetic fluid seals are studied numerically as a function of working gap, pole width, angle of pole sharpening, and shaft speed. The temperature distribution of a magnetic fluid seal with multiple tooth is investigated as a function of the contact fraction of magnetic fluids at the periphery of pole tooth using a finite element method. The most significant design parameter of a magnetic fluid seal is the working gap between the pole pieces and the rotating shaft. The result shows that with increasing the working gap, the friction torque decreases radically. The practical working gap for the pole pieces with triangular tooth zone profile is 0.2-0.4mm. The FEM results indicate that the optimal filling of a magnetic fluid between the pole pieces and the shaft is very important due to the accumulations of nonuniform friction heating within the pole pieces, which may interfere the magnetic circuit flow.

Experimental study on Magnetic Flow Characteristics of MR Fluid (MR 유체의 자기유동 특성에 대한 실험연구)

  • Lee, Seok-Hyun;Kim, Ki-Young;Baek, Dae-Sung;Kwon, Young-Chul;Park, Sam-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.3611-3616
    • /
    • 2013
  • Physical characteristics of a magneto-rheological(MR) fluid can be influenced by a magnetic field. In the present study, the behaviors of MR fluid are visualized and the shear stresses are measured under the magnetic field for density 1.3, 1.5 and 1.7 $g/cm^3$, and viscosity 100, 1000 and 10000cp. When the magnetic field is applied, particles of MR fluid are arranged along lines of magnetic field. It is observed that the flow pattern of MR fluid under the magnetic field is different from that of MR fluid without the magnetic field. Shear stress of MR fluids under the magnetic field changes significantly. Shear stress by the magnetic field increases the shape of a quadratic equation. When the density changes from $1300kg/m^3$ to $1700kg/m^3$ at 2.0A, the shear stress increases about 33%.

A Simplified Unified Model for Predicting the Dielectrophoretic Aactivity of Magnetic Nanoparticles Aimed at Enhancing the Dielectric Characteristics of Transformer Oil

  • Lee, Jong-Cheol;Jeon, Hong-Pil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.431.2-431.2
    • /
    • 2014
  • The dielectric breakdown voltage (DBV) is a measure of an insulating fluids ability to withstand a high electric field stress without breaking down. Conventionally, the presence of water or particulate matter in a dielectric fluid comprises the liquid's breakdown strength. However, the addition of magnetic nanoparticles (MNPs) in the base oil can increase the dielectric breakdown voltage of the fluid reversely, if the condition of the added particles in the fluid is in balance with that of keeping down the initiation and propagation of electrical streamers. In this study, we developed a mathematical model by a set of coupled, nonlinear equations using the COMSOL multiphysics finite element simulation suite and calculated the dielectrophoretic activity of magnetic nanoparticles suspended in the presence of electric field, which is the behavior responsible for enhancing the dielectric characteristics of transformer oil, in order to examine how the activity differ in a transformer oil-based magnetic fluid.

  • PDF

Development of Flow Control Valve Using MR Fluid (MR유체를 이용한 유량제어 밸브)

  • Lee, Hyung-Don;Bae, Hyung-Sub;Lee, Yuk-Hyung;Park, Myeong-Kwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.888-891
    • /
    • 2011
  • This paper presents development of flow control valve using MR fluid. Generally, since the apparent viscosity of MR fluids is adjusted by applying magnetic fields, the MR valves can control high level fluid power without any mechanical moving parts. In this paper, flow control valve using MR fluid on the behavior of the magnetic field influence on the numerical analysis of more accurate electromagnetic parameters were obtained, even if when magnetic field apply inside of surrounding MR fluid from electromagnet, more realistic designing way analysis of characteristic of whole magnetic field distribution is suggested by surrounding magnetic material. Also, comparison of flow rate inlet and outlet, behavior of MR fluid in experiments proposed. A new type of flow control valve using MR fluid is proposed by analysis of behavior of MR fluid in experiments.

Improvement in Probability of Detection for Leakage Magnetic Flux Methods (누설자속탐상법의 결함검출능력 향상에 관한 연구)

  • Lee, Jin-Yi
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.13-18
    • /
    • 2004
  • It is important to estimate the distribution of intensity of a magnetic field for application of magnetic method to industrial nondestructive evaluation. Magnetic camera provides the distribution of a quantitative magnetic field with homogeneous lift-off and same spatial resolution. Leakage magnetic flux near the crack on the specimen could be amplified by 3-dimensional magnetic fluid and zoom in and out of measurement area. This study introduces the experimental consideration of the effects of lens for concentrating of magnetic flux. The experimental results showed that the magnetic fluid has sufficient lens effect for magnetic camera and effect of improvement in probability of detection.

  • PDF

A study on the optical switch using magnetic behavior of magnetic fluids (자성유체의 자기적 거동특성을 이용한 광 스위치에 관한 연구)

  • Choi, Bum-Kyoo;Oh, Jae-Geun;Kim, Do-Hyung;Song, Kwan-Min
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.16-21
    • /
    • 2005
  • This paper presents the development of the optical switch using magnetic behavior of magnetic fluids, which is expected to be used broadly in high-speed information communication. The magnetic fluids for switching an incident light, have the magnetic characteristics of magnetic materials and fluidity of liquids, simultaneously. The relations are derived between the intensity of magnetic field and the angle of optical fiber which is bent by a behavior of magnetic fluid when the magnetic field is applied. When optical switch is implemented by the movement of liquid using magnetic fluid, the existing problem of durability for optical switch will be improved. Thus, this study shows the feasibility of the application for the optical switches using magnetic fluids.

Electromagnetic Design Methodology for MR Fluid Actuator (MR 유체 작동기의 전자기적 설계 방법)

  • Nam Yun-Joo;Moon Young-Jin;Lee Yuk-Hyung;Park Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1305-1313
    • /
    • 2006
  • This paper presents an electromagnetic design methodology for the magneto-rheological (MR) fluid actuator. In order to improve the performance of the MR fluid actuator, the magnetic circuit including the MR fluid, the ferromagnetic material for flux path and the electromagnetic coil should be well designed, thereby the magnetic field intensity can be effectively supplied to the MR fluid. First of all, in order to improve the static characteristic, the length of the flux path is decreased by removing the unnecessary bulk of the yoke. Next, in order to improve the dynamic and hysteretic characteristics, the magnetic reluctance of the ferromagnetic material is increased by minimizing the cross section through which the flux passes. The effectiveness of the proposed design methodology is verified by the magnetic analysis and a series of basic experiments.

A Study on the Elevation Control and the Deformation of Free Surface of Magnetic Fluid by Electromagnetic Force (전자기력에 의한 자성유체의 자유표면 형성 및 상승높이 제어에 관한 연구)

  • Lee, Eun-Jun;Shin, Jin-Oh;Park, Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1699-1706
    • /
    • 2002
  • In this paper, the investigation about the elevation control and the formation of the free surface of magnetic fluids is carried out theoretically and experimentally on the basis of magnetic fluids is carried out theoretically and experimentally on the basis of Rosensweig' Ferrohydrodynamic Bernoulli Equation. Governing equations of magnetic fields are solved using the concept of vector potential. While applied magnetic fields are induced by 4$\times$4 electromagnet located under the magnetic fluid, the fee surface of the magnetic fluid is formed the balance of surface force, gravity, pressure difference, magnetic normal pressure and magnetic body force. The results of numerical simulation and experiment show the formation of the free surface of the magnetic fluid. Using PID control, an experiment for the elevation control of the free surface of magnetic fluids is performed.