• 제목/요약/키워드: Magnetic control

검색결과 2,259건 처리시간 0.035초

Fault Tolerant Homopolar Magnetic Bearings with Flux Invariant Control

  • Na Uhn-Joo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권5호
    • /
    • pp.643-651
    • /
    • 2006
  • The theory for a novel fault-tolerant 4-active-pole homopolar magnetic bearing is developed. If any one coil of the four coils in the bearing actuator fail, the remaining three coil currents change via an optimal distribution matrix such that the same opposing pole, C-core type, control fluxes as those of the un-failed bearing are produced. The hompolar magnetic bearing thus provides unaltered magnetic forces without any loss of the bearing load capacity even if any one coil suddenly fails. Numerical examples are provided to illustrate the novel fault-tolerant, 4-active pole homopolar magnetic bearings.

Fault Tolerant Control of Magnetic Bearings with Force Invariance

  • Na, Uhn-Joo
    • Journal of Mechanical Science and Technology
    • /
    • 제19권3호
    • /
    • pp.731-742
    • /
    • 2005
  • A magnetic bearing even with multiple coil failure can produce the same decoupled magnetic forces as those before failure if the remaining coil currents are properly redistributed. This fault-tolerant, force invariance control can be achieved with simply replacing the distribution matrix with the appropriate one shortly after coils fail, without modifying feedback control law. The distribution gain matrix that satisfies the necessary constraint conditions of decoupling linearized magnetic forces is determined with the Lagrange Multiplier optimization method.

전자기력에 의한 자성유체의 자유표면 형성 및 상승높이 제어에 관한 연구 (A Study on the Elevation Control and the Deformation of Free Surface of Magnetic Fluid by Electromagnetic Force)

  • 이은준;신진오;박명관
    • 대한기계학회논문집B
    • /
    • 제26권12호
    • /
    • pp.1699-1706
    • /
    • 2002
  • In this paper, the investigation about the elevation control and the formation of the free surface of magnetic fluids is carried out theoretically and experimentally on the basis of magnetic fluids is carried out theoretically and experimentally on the basis of Rosensweig' Ferrohydrodynamic Bernoulli Equation. Governing equations of magnetic fields are solved using the concept of vector potential. While applied magnetic fields are induced by 4$\times$4 electromagnet located under the magnetic fluid, the fee surface of the magnetic fluid is formed the balance of surface force, gravity, pressure difference, magnetic normal pressure and magnetic body force. The results of numerical simulation and experiment show the formation of the free surface of the magnetic fluid. Using PID control, an experiment for the elevation control of the free surface of magnetic fluids is performed.

공기포일 및 자기 하이브리드 베어링으로 지지되는 연성축의 휨 모드 진동 제어 (Bending Mode Vibration Control of a Flexible Shaft Supported by a Hybrid Air-foil Magnetic Bearing)

  • 정세나;안형준;김승종
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.791-791
    • /
    • 2009
  • Hybrid air-foil magnetic bearing combines two oil free bearing technologies to take advantage of the strengths of each bearing with minimizing each other weaknesses. This paper presents bending mode vibration control of a flexible shaft supported by the hybrid air-foil magnetic bearing. An experiment set-up of a flexible shaft supported by the hybrid air-foil magnetic bearing is built. In order to verify the effectiveness of the hybrid bearing, unbalance responses of the flexible shaft supported by three different bearings: air-foil, magnetic and hybrid bearings are compared. Effect of load sharing between air-foil and magnetic bearings are investigated through changing control gain and offset displacements of magnetic bearing.

  • PDF

회전체 진동 감소를 위한 마그네틱 댐퍼의 설계 및 응용 (Design and Application of Magnetic Damper for Reducing Rotor Vibration)

  • 김영배;이형복;이봉기
    • 대한기계학회논문집A
    • /
    • 제24권2호
    • /
    • pp.355-361
    • /
    • 2000
  • In this study, active control magnetic actuator for reducing vibration of rotor system is performed. Identification, modeling, simulation, control system design, and evaluation of active magnetic damper system have been researched. Power amplifier modeling, connected magnetic actuator and augmented by system identification, is included to establish a magnetic damper simulation which provides close performance correspondence to the physical plant. A magnetic actuator, digital controller using DSP(Digital Signal Processor), and bipolar operational power supply/amplifiers are developed to show the effectiveness of reducing rotor vibration. Also the curve fitting procedure to obtain the transfer function of frequency dependent components is developed. Two kinds of test are executed as sliding and oil bearing. Results presented in this paper will provide a well-defined technical parameters in designing magnetic damper system for the proposed rotor.

자기부상 시스템의 $H_{\infty}$ 제어 ($H_{\infty}$ control of magnetic suspension system)

  • 김종문;김춘경;박민국;김국헌
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.322-322
    • /
    • 2000
  • This paper shows an application of H$_{\infty}$ control design for a magnetic suspension system which has strongly nonlinearity and parameter perturbation. The control design is evaluated by numerical simulations and experiments.

  • PDF

선형화 기법을 사용한 자기부유기 모델링과 DSP기반 가변 위치 제어 (Linearized Modeling and Variable Position Control of Magnetic Levitator Using DSP)

  • 김정재;송승호
    • 전력전자학회논문지
    • /
    • 제9권2호
    • /
    • pp.158-162
    • /
    • 2004
  • 자기부유기는 전자력을 이용해서 자성재료를 공중에 떠있게 할 수 있는 장치로 고속회전기에 사용되는 자기 베어링과 자기 부상 열차의 부상원리 등에 응용될 수 있다. 하지만 자기 부유기는 근본적으로 비선형이며 불안정한 시스템으로서 제어에는 많은 어려움이 따른다. 본 논문에서는 비선형 시스템인 자기부유기를 국부적으로 선형화해서 모델링하고, 가변 위치 제어를 수행할 수 있도록 비례미분 위치제어기를 설계하였다. 또한 PWM 컨버터와 DSP기반 제어보드를 이용한 자기 부유기를 제작하고, 시뮬레이션과 실험을 통하여 위치제어 응답성능을 검증하였다.

능동진동제어를 위한 선형 자기 액추에이터 개발 (Development of Linear Magnetic Actuator for Active Vibration Control)

  • 이행우;곽문규;김기영;이한동
    • 한국소음진동공학회논문집
    • /
    • 제19권7호
    • /
    • pp.667-672
    • /
    • 2009
  • This paper is concerned with the development of linear magnetic actuator for active vibration control. The newly developed linear magnetic actuator consists of permanent magnets and copper coils. On the contrary to the voice-coil type actuator, the linear magnetic actuator utilizes magnetic flux to generate the shaft movement. In this study, experiments on the prototype linear magnetic actuator were carried out to investigate its dynamic characteristics. Block and inertia forces generated by the actuator were measured. The experimental results show that the actuator can be used as both actuator and active tuned-mass damper. The linear magnetic actuator was attached to a cantilever as the active-tuned mass damper and active vibration control experiment was carried out. The experimental results show that the newly developed linear magnetic actuator can be effectively used for the active vibration control of structures.

공기포일 자기 하이브리드 베어링으로 지지되는 연성 축의 휨 모드 진동 제어 (Bending Mode Vibration Control of a Flexible Shaft Supported by a Hybrid Air-foil Magnetic Bearing)

  • 정세나;안형준;김승종;이용복
    • Tribology and Lubricants
    • /
    • 제27권2호
    • /
    • pp.57-64
    • /
    • 2011
  • Hybrid air-foil magnetic bearing integrates two oil free bearing technologies synergetically to adopt the strengths of two bearings with minimizing their weaknesses. This paper presents bending mode vibration control of a flexible shaft supported by the hybrid air-foil magnetic bearing. An experiment set-up of a flexible shaft supported by the hybrid air-foil magnetic bearing is built. In order to verify the effectiveness of the hybrid bearing, unbalance responses of the flexible shaft supported by three different bearings: air-foil, magnetic and hybrid bearings are compared. Effect of load sharing between air-foil and magnetic bearings are investigated through changing the control gain and the rotor center position of magnetic bearing. The experimental results shows that the hybrid bearing can control the bending mode vibration of the flexible shaft effectively and an optimal performance can be achieved with an appropriate load sharing between the air-foil and the magnetic bearings.

자성유체 자유표면의 형상 제어에 관한 연구 (A Study on the Deformation control of Free Surface of Magnetic Fluid)

  • 안창호;김대영;지병걸;이은준;박명관
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.297-300
    • /
    • 2002
  • In this study, the deformation of the free surface motion of a magnetic fluid for the change in electromagnetic force is discussed and carried out theoretically and experimentally on the basis of Rosensweig Ferrohydrodynamic Bernoulli Equation. While applied magnetic fields are induced by 4$\times$4 electromagnet located under the magnetic fluid, the surface of the magnetic fluid is formed the balance of surface force, gravity, pressure difference, magnetic normal pressure and magnetic body farce. In case, magnetic fluid in characteristics of fluid adjusted to the opposite direction of the gravity direction. thus, the device of a magnetic fluid proposed the surface actuator. The device of surface deformation as well comparison between numerical simulation and experiments as will be presented.

  • PDF