• Title/Summary/Keyword: Magnetic composite materials

Search Result 172, Processing Time 0.017 seconds

Prediction of Decompensation and Death in Advanced Chronic Liver Disease Using Deep Learning Analysis of Gadoxetic Acid-Enhanced MRI

  • Subin Heo;Seung Soo Lee;So Yeon Kim;Young-Suk Lim;Hyo Jung Park;Jee Seok Yoon;Heung-Il Suk;Yu Sub Sung;Bumwoo Park;Ji Sung Lee
    • Korean Journal of Radiology
    • /
    • v.23 no.12
    • /
    • pp.1269-1280
    • /
    • 2022
  • Objective: This study aimed to evaluate the usefulness of quantitative indices obtained from deep learning analysis of gadoxetic acid-enhanced hepatobiliary phase (HBP) MRI and their longitudinal changes in predicting decompensation and death in patients with advanced chronic liver disease (ACLD). Materials and Methods: We included patients who underwent baseline and 1-year follow-up MRI from a prospective cohort that underwent gadoxetic acid-enhanced MRI for hepatocellular carcinoma surveillance between November 2011 and August 2012 at a tertiary medical center. Baseline liver condition was categorized as non-ACLD, compensated ACLD, and decompensated ACLD. The liver-to-spleen signal intensity ratio (LS-SIR) and liver-to-spleen volume ratio (LS-VR) were automatically measured on the HBP images using a deep learning algorithm, and their percentage changes at the 1-year follow-up (ΔLS-SIR and ΔLS-VR) were calculated. The associations of the MRI indices with hepatic decompensation and a composite endpoint of liver-related death or transplantation were evaluated using a competing risk analysis with multivariable Fine and Gray regression models, including baseline parameters alone and both baseline and follow-up parameters. Results: Our study included 280 patients (153 male; mean age ± standard deviation, 57 ± 7.95 years) with non-ACLD, compensated ACLD, and decompensated ACLD in 32, 186, and 62 patients, respectively. Patients were followed for 11-117 months (median, 104 months). In patients with compensated ACLD, baseline LS-SIR (sub-distribution hazard ratio [sHR], 0.81; p = 0.034) and LS-VR (sHR, 0.71; p = 0.01) were independently associated with hepatic decompensation. The ΔLS-VR (sHR, 0.54; p = 0.002) was predictive of hepatic decompensation after adjusting for baseline variables. ΔLS-VR was an independent predictor of liver-related death or transplantation in patients with compensated ACLD (sHR, 0.46; p = 0.026) and decompensated ACLD (sHR, 0.61; p = 0.023). Conclusion: MRI indices automatically derived from the deep learning analysis of gadoxetic acid-enhanced HBP MRI can be used as prognostic markers in patients with ACLD.

The Extent of Late Gadolinium Enhancement Can Predict Adverse Cardiac Outcomes in Patients with Non-Ischemic Cardiomyopathy with Reduced Left Ventricular Ejection Fraction: A Prospective Observational Study

  • Eun Kyoung Kim;Ga Yeon Lee;Shin Yi Jang;Sung-A Chang;Sung Mok Kim;Sung-Ji Park;Jin-Oh Choi;Seung Woo Park;Yeon Hyeon Choe;Sang-Chol Lee;Jae K. Oh
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.324-333
    • /
    • 2021
  • Objective: The clinical course of an individual patient with heart failure is unpredictable with left ventricle ejection fraction (LVEF) only. We aimed to evaluate the prognostic value of cardiac magnetic resonance (CMR)-derived myocardial fibrosis extent and to determine the cutoff value for event-free survival in patients with non-ischemic cardiomyopathy (NICM) who had severely reduced LVEF. Materials and Methods: Our prospective cohort study included 78 NICM patients with significantly reduced LV systolic function (LVEF < 35%). CMR images were analyzed for the presence and extent of late gadolinium enhancement (LGE). The primary outcome was major adverse cardiac events (MACEs), defined as a composite of cardiac death, heart transplantation, implantable cardioverter-defibrillator discharge for major arrhythmia, and hospitalization for congestive heart failure within 5 years after enrollment. Results: A total of 80.8% (n = 63) of enrolled patients had LGE, with the median LVEF of 25.4% (19.8-32.4%). The extent of myocardial scarring was significantly higher in patients who experienced MACE than in those without any cardiac events (22.0 [5.5-46.1] %LV vs. 6.7 [0-17.1] %LV, respectively, p = 0.008). During follow-up, 51.4% of patients with LGE ≥ 12.0 %LV experienced MACE, along with 20.9% of those with LGE ≤ 12.0 %LV (log-rank p = 0.001). According to multivariate analysis, LGE extent more than 12.0 %LV was independently associated with MACE (adjusted hazard ratio, 6.71; 95% confidence interval, 2.54-17.74; p < 0.001). Conclusion: In NICM patients with significantly reduced LV systolic function, the extent of LGE is a strong predictor for long-term adverse cardiac outcomes. Event-free survival was well discriminated with an LGE cutoff value of 12.0 %LV in these patients.