• 제목/요약/키워드: Magnetic bearing spindle

검색결과 40건 처리시간 0.021초

고속 밀링 주축용 자기베어링 시스템의 디지털 제어기 설계 (Digital Controller Design of a Magnetic Bearing System for High Speed Milling Spindle)

  • 노승국;경진호;박종권
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.398-403
    • /
    • 2004
  • The demand of high speed machining is increasing because the high speed cutting providers high efficiency of process, short process time, improved metal removal capacity and better surface finish. Active magnetic bearings allow much high surface speed than conventional ball bearings and therefore greatly suitable for high speed cutting. The automatic control concept of magnetic bearing system provides ability of intelligent control of spindle system to increase accuracy and flexibility by means of adaptive vibration control. This paper describes a design and development of a milling spindle system which includes built-in motor with power 5.5㎾ and maximum speed 70,000rpm, HSK-32C tool holer and active magnetic bearing system. Magnetic actuators are designed for satisfying static load condition. The Performances of manufactured spindle system was examined for its static and dynamic stiffness, load capacity, and rotational accuracy. This spindle was run up to 70,000 rpm stably, which is 3.5 million DmN.

  • PDF

수동형 자기 베어링과 유체 동압 저널베어링을 이용한 HDD용 스핀들 모터 개발 (Development of a HDD Spindle Motor Using Passive Magnet Bearing and Fluid Dynamic Journal Bearing)

  • 이청일;김학운;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.473-477
    • /
    • 2005
  • This paper presents a highly efficient HDD (Hard Disk Drive) spindle motor with a passive magnetic thrust bearing and a fluid dynamic journal bearing and its effectiveness is verified through experiment. It eliminates the mechanical friction loss of a thrust bearing which is around 18% of total power consumption of a 3.5' HDD spindle motor, by replacing a conventional fluid dynamic thrust bearing with a passive magnetic thrust bearing. The passive magnetic thrust bearing using permanent magnets is inherently unstable in radial direction. However, the radial fluid dynamic force of the fluid dynamic journal bearing counterbalances the radial magnetic force of magnetic thrust bearing to achieve the stability as the motor spins up. It has less or equivalent runout and less flying height than the conventional spindle motor.

  • PDF

내면연삭기 고속 주축용 원추형 자기베어링시스템 설계 (Design of Cone-Shaped Magnetic Bearing Spindle System for High Speed Internal Grinding Machine)

  • 박종권;노승국;경진호
    • 한국정밀공학회지
    • /
    • 제19권2호
    • /
    • pp.213-219
    • /
    • 2002
  • A cone-shaped active magnetic healing spindle system for high speed internal grinding with built-in motor that has 7.5kW power and maximum rotational speed of 50,000 rpm is designed and built. Using cone-shaped AMB(Active Magnetic Bearing) system, the axial rotor dick and magnets of conventional 5-axis actuating design can be eliminated. so this concept of design provides a simple magnetic bearing system. In this paper, the cone-shaped electromagnets are designed by magnetic circuit theory, and a de-coupled direct feedback PID controller is applied to control the coupled magnetic bearings. The designed crone-shaped AMB spindle system is built and constructed with a digital control system, which has TMS320C6702 DSP, 16 bit AD/DA, switching power amplifier and gap sensors. As the AMB system provides high damping ratio eliminating overshoot and resonance speed, this spindle runs up to 40,000 rpm stably with about 5${\mu}{\textrm}{m}$ of runout.

자기베어링으로 지지된 연삭 스핀들의 런아웃 제어 (Runout Control of a Magnetically Suspended Grinding Spindle)

  • 노승국;경진호;박종권;최언돈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.1011-1015
    • /
    • 2000
  • In this paper, the case studies of reducing rotational errors is theoretically done for a grinding spindle with an active magnetic bearing system. The rotational errors acting on the magnetic bearing spindle are due to mass unbalance of rotor, runout, grinding excitation and unmodeled nonlinear dynamics of electromagnets. The adaptive feedforward method based on LMS algorithm is discussed to compensate output and input disturbances, and investigated its effectiveness by numerical simulation. The feedforward control reduced external excitation and rotational error for specified frequency. The interpolation method using impulse function for cancelling the electrical 'uncut is studied. These methods show their effectiveness for the rotational accuracy of the improving magnetic bearing spindle through some simulation results of the rotational error decreased by them.

  • PDF

고속 내면 연삭기 주축용 원추형 자기베어링 설계 연구 (Study on Design of Cone-Shaped Magnetic Bearing Spindle System for High Speed Internal Grinding)

  • 노승국;경진호;박종권;최언돈;양승준;이재응;김남용;이동주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.79-83
    • /
    • 2001
  • A cone-shaped active magnetic bearing spindle system for high speed internal grinding is designed and tested. The cone-shaped AMB system consists of only 4 couples of magnet, it can be smaller and lighter than conventional radial-axial-type AMB system. In this paper, the cone-shaped electromagnets are designed by magnetic circuit theory, and de-coupled direct feedback PID controller is applied to control the coupled magnetic bearings. The designed cone-shaped AMB spindle system is built and constructed with a digital control system, and tested its stbility and dynamic performances. As the results of the tests, this spindle runs up to 40,000 rpm with about 5 ${\mu}{\textrm}{m}$ of runout, and the AMB system provides high damping ratio eliminating overshoot and resonance speed.

  • PDF

연삭기용 자기베어링 주축계의 고속화에 관한 연구 (Design of a Magnetic Bearing System for a High Speed Grinding Spindle)

  • 박종권;노승국;안대균
    • 한국정밀공학회지
    • /
    • 제15권11호
    • /
    • pp.233-243
    • /
    • 1998
  • The demand of high speed machining is increasing due to the high speed cutting and grinding provides high efficiency of process, short process time, improved metal removal capacity and better surface finish. Active magnetic bearings allow much high surface speed than conventional ball bearings and therefore greatly suitable for high speed cutting or grinding. This paper describes a design process of an active magnetic bearing system for a high speed grinding spindle with power 5.5kW and maximum speed 60,000rpm. Magnetic actuators are designed by the magnetic circuit theory considering static load condition, and examined with FEM analysis. Dynamic characteristics are also considered, such as bandwidth, stiffness, natural frequency and static deflection. System characteristics are simulated with a rigid rotor model.

  • PDF

DLP용 유체동압베어링 스핀들모터 (Fluid Dynamic Bearing Spindle Motors for DLP)

  • 김응철;성세진
    • 전기학회논문지P
    • /
    • 제60권2호
    • /
    • pp.82-90
    • /
    • 2011
  • The small precision spindle motors in the high value-added products including the visible home appliances such as DLP projector require not only the energy conversion devices but also high efficiency, low vibration and sound operation. However, the spindle motors using the conventional ball bearing and sintered porous metal bearing have following problems, respectively: the vibration by the irregularity of balls and the short motor life cycle by the ball's abrasion and higher sound noises by dry contact between shaft and sleeve. In this paper, it is proposed that the spindle motor with a fluid dynamic bearing is suitable for the motor to drive the color wheel of the DLP(digital lightening processor) in the visible home appliances. The proposed spindle motor is composed of the fluid dynamic bearing with both the radial force and the thrust force. The fluid dynamic bearing is solved by the finite element analysis of the mechanical field with the Reynolds equations. The magnetic part of spindle motor, which is a type of Brushless DC Motor, is designed by the electro-magnetic field analysis coupled with the Maxwell equation. And the load capacity and the friction loss of fluid dynamic bearing are analyzed to bearing clearance variation by the fabrication error in designed motor. The design of the proposed motor is implemented by the load torque caused by the eccentricity and the unbalance of the fluid dynamic bearing when the motors are fabricated in error. The prototype of the motor with the fluid dynamic bearing is manufactured, and experiment results show the vibration, sound, and phase current at no load and color wheel load of the motors in comparison. The high performance characteristics with the low vibration, the low acoustic noise and the optimal mechanical structure are verified by the experimental results.

자기베어링으로 지지된 연삭 스핀들의 런아웃 제어 -LMS Feedforward 제어를 이용한 실험적 해석- (Runout Control of Mgenetically Suspended Grinding Spindle - Experimental Analysis of Adaptive LMS Feedforward Control Method -)

  • 노승국;경진호;박종권;최언돈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.997-1001
    • /
    • 2000
  • In this paper, the case studies of reducing rotational errors is theoretically done for a grinding spindle with an active magnetic bearing system. The rotational errors acting on the magnetic bearing spindle are due to mass unbalance of rotor, runout, grinding excitation and unmodeled nonlinear dynamics of electromagnets. For the most case, the electrical runout of sensor target is big even in well finished surface, this runout can cause a rotation error amplified by feedback control system. The adaptiveed forward method based on LMS algorithm is discussed to compensate this kind of runout effects, and investigated its effectiveness by numerical simulation and experimental analysis. The electrical runout form the rear sensor target of grind spindle is about 70$\mu\textrm{m}$ with harmonic frequencies. The rotor orbit size in rear bearing is reduced about to 5$\mu\textrm{m}$ due to 1X and 2X rejection by feedforward control.

  • PDF

자기베어링지지 연삭기 추축계의 고속 회전시 런아웃 적응제어 (Adaptive Runout Control of Magnetically Suspended High Speed Grinder Spindle)

  • 노승국;경진호;박종권;최언돈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.52-55
    • /
    • 1997
  • In this paper, the case study of reducing rotational errors is done for a grinding spindle with an active magnetic bearing system. The rotational errors acting on the magnetic bearing spindle are due to mass unbalance of rotor, runout, grinding excitation and unmodeled nonlinear dynamics of electromagnets. For the most case, the electrical runout of sensor target is big even in well-finished surface; this runout can cause a rotation error amplified by feedback control system. The adaptive feedforward method based on LMS algorithm is discussed to compensate this kind of runout effects, and investigated its effectiveness by numerical simulation and experimental analysis. The rotor orbit size in both bearings is reduced about to 5 pin due to lX rejection by feedforward control up to 50, 000 rpm.

  • PDF

광파이버 변위 센서를 적용한 자기베어링 정적 부상 제어 연구 (A Study on the Static Levitation Control of Magnetic Bearing using Optical Fiber Displacement Sensors)

  • 강종규;신우철;홍준희
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.131-136
    • /
    • 2003
  • Five expensive sensors are necessary to control a magnetic bearing system. The sensor price rate of magnetic bearing system is high. So it is necessary that cheap and good sensor is developed. The optical fiber displacement sensor is adaptive to satisfy this condition. We can design magnetically suspended spindle based on static characteristic of optical fiber displacement sensor developed. The controller can be designed by decoupled feedback PD. Therefore, it is simpler than any other controller comparatively.

  • PDF