• Title/Summary/Keyword: Magnetic abrasive finishing

Search Result 66, Processing Time 0.028 seconds

Study on the Characteristics of Precision Electrochemical Polishing by Using Lorentz's Principle (로렌츠원리에 의한 초정밀 전해연마 특성에 관한 연구)

  • 김정두
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.82-85
    • /
    • 1995
  • Magnetic-electrolytic-abrasive polishign(MEAP) systemwas newly developed and the finishing characteristics of Cr-coated roller was analyzed. The paper describes the operational principle of MEAP system and magnetic field effect on the MEAP process by experimental results. The finishing characteristics and optimal finishing condition for Cr-coated roller were experimented and analyzed.

  • PDF

Surface Characteristics with respect to Magnetic Abrasive Finishing in Carbon Fiber Reinforced Plastics (탄소섬유강화 복합재료의 자기연마 가공에 대한 표면특성)

  • Mun, Sang-Don;Song, Jun-Hee
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.522-529
    • /
    • 2011
  • Carbon fiber reinforced plastics (CFRP), which have been developed for their high mechanical properties, are insufficient to secure machinery. This paper investigates the use of magnetic abrasive finishing methods and the characteristics of surface roughness for mirror machining of CFRP. The cylindrical surface of CFRP was ground using a diamond paste with sizes of 0.1, 0.5, 1 and 6${\mu}m$. Consequently, an effective surface roughness of 0.03${\mu}m(R_a)$ could be obtained via a paste size of 0.5${\mu}m$. The surface roughness was not improved due to epoxy abrasion between the carbon fiber and the epoxy.

Experimental Verification of Characteristics of Magnetic Abrasive Polishing Combined with Ultrasonic Vibration (실험계획법에 의한 초음파가 부가된 자기연마가공의 특성평가)

  • Jin, Dong-Hyun;Kwak, Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.923-928
    • /
    • 2015
  • In this paper, we propose an ultrasonic magnetic abrasive polishing (US-MAP) technique to effectively machine a high-strength material, and we prove the efficiency of hybrid finishing. We use Taguchi's experimental method to determine the influence of each parameter. Based on the results, US-MAP exhibited a higher polishing efficiency than traditional MAP, and a suitable frequency for hybrid finishing was 28 kHz. When investigating the effect of the parameters on the surface roughness, the ultrasonic amplitude had the greatest effect. However, when machining with $55-{\mu}m$ amplitude, the machining efficiency decreased as the magnetic flux density varied.

Assessment on magnetic abrasive finishing of inclined surface and prediction model for surface roughness (경사면의 자기연마가공 특성평가 및 표면거칠기 예측모델)

  • Lee, Jung-In;Kim, Sang-Oh;Kwak, Jae-Seob
    • Design & Manufacturing
    • /
    • v.2 no.6
    • /
    • pp.11-16
    • /
    • 2008
  • In order to satisfy the customer's variant needs for a product quality in recent years, a demand for developing higher precision machining technologies in a lot of application areas such as automobile, cellular phone and semiconductor has been increased more and more. Micro-magnetic induced polishing(${\mu}-MIP$) process is one of these precision technologies. In this study, to verify the parameters' effect of the ${\mu}-MIP$ process on the surface roughness improvement of the inclined workpiece, well planned experiment which was called the design of experiments was carried out. Considered parameters were spindle speed, inductor current, abrasive configuration and working gap between the workpiece and the solid tool. As a result, it was seen that the inductor current and the working gap greatly affected the surface roughness improvement. And to predict the surface roughness of the inclined workpiece, S/N ratio and first-order response surface model was developed.

  • PDF

A Study on the Polishing of Stainless Steel by Magneto Electrolytic (자기전해에 의한 스테인레스강의 폴리싱에 관한 연구)

  • 김정두
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.38-43
    • /
    • 1998
  • Magneto Electrolytic Polishing (MEP) is a process in which metal ions are removed from a abrasive through a combination of magnetic electric current and chemical solution. The substrate is immersed into the magnetic effect, chemical solution, and DC crunt is applied. Several factors affect the rate at which the metal ions are removed from the substrate. Three of the most significant are the amount of time in which the substrate is immersed I the solution, and the amount of direct current applied in magnetic field. In this study, the surface finishing characteristics and optical finishing condition for the stainless steel were experimented upon and analyzed.

  • PDF

Evaluations of Magnetic Abrasive Polishing and Distribution of Magnetic Flux Density on the Curvature of Non-Ferrous Material (곡면 자기연마에서의 자기력 형성과 가공특성에 관한 연구)

  • Kim, Sang-Oh;Kwak, Jae-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.3
    • /
    • pp.259-264
    • /
    • 2012
  • Automatic magnetic abrasive polishing (MAP), which can be applied after machining of a mold on a machine tool without unloading, is very effective for finishing a free-form surface such as a complicated injection mold. This study aimed to improve the efficiency of MAP of a non-ferrous mold surface. The magnetic array table and control of the electromagnet polarity were applied in the MAP of a free-form surface. In this study, first, the magnetic flux density on the mold surface was simulated to determine the optimal conditions for the polarity array. Then, the MAP efficiency for polishing a non-ferrous mold surface was estimated in terms of the change in the radius of curvature and the magnetic flux density. The most improved surface roughness was observed not only in the upward tool path but also in the working area of larger magnetic flux density.

Fabrication of the Fine Magnetic Abrasives by using Mechanical Alloying Process and Its Polishing Characteristics (기계적 합금화 공정을 이용한 초미세 자성연마입자의 제조 및 특성 평가)

  • Park Sung-Jun;Lee Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.34-41
    • /
    • 2004
  • A new method to fabricate the fine magnetic abrasives by using mechanical alloying is proposed. The mechanical alloying process is a solid powder process where the powder particles are subjected to high energetic impact by the balls in a vial. As the powder particles in the vial are continuously impacted by the balls, cold welding between particles and fracturing of the particles take place repeatedly during the ball milling process using a planetary mill. After the manufacturing process, fine magnetic abrasives which the guest abrasive particles c lung to the base metal matrix without bonding material can be obtained. The shape of the newly fabricated fine magnetic abrasives was investigated using SEM and its polishing performance was verified by experiment. It is very helpful to finishing the injection mold steel in final polishing stage. The areal ms surface roughness of the workpiece after several polishing processes has decreased to a few nanometer scales.

A Study on the Improvement of Performance of High Speed Cutting Tool using Magnetic Fluid Grinding Technique (자기연마기술을 이용한 고속절삭공구 성능향상에 관한 연구)

  • Park S.R.;Cho J.R.;Park M.G.;Yang S.C.;Jung Y.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1289-1293
    • /
    • 2005
  • We will improve tools performance without the change of a tools' physical shape, if we process mirror like finishing on the surface of cutting tools. Because cutting tools' shapes are very complex, the general method of polishing can't be polished. So we will apply new method of polishing which is magnetic fluid grinding technique. Magnetic fluid grinding technique can polish complex shape's workpiece by pressing the surface of workpiece with magnetic and abrasive grains in magnetic field. Therefore we developed the polishing equipment to improve the performance of cutting tools and experimented on various polishing conditions to determine the polishing conditions of cutting tools.

  • PDF

The Study on Burr Removal Rate Along the Cutting Radial Distance in U-type Flow Channel (절삭 반경에 따른 U-type 유로 형상의 버 제거율에 관한 연구)

  • Son, Chul-Bae;Lee, Jung-Hee;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.8-13
    • /
    • 2019
  • As increasing demand for precise machining in advanced disciplines, especially in semi-conductor, aeronautical and automotive industries, the magnetic abrasive deburring(MAD) which is able to eliminate micro-sized burr on complex surface in less time has drawn the attention in the last decades. However, the performance of MAD is subject to shape and size of a tool. Therefore, this study aim to identify deburring behavior of MAD in U-type flow channel by measuring the length rate of burr removal in radial distance of the cylindrical tool under four process factors. In order to evaluate the deburring effect of MAD on the surface, finishing regions are divided based on center of the circular cutting tool. As a results, it was defined that the amount of burr removal in a downward direction moving toward flow channel from the top surface was higher than upward direction. This is because the magnetic abrasives were detached from magnetic lines of force due to geometrical shape.