• 제목/요약/키워드: Magnetic abrasive

검색결과 127건 처리시간 0.026초

노트북 케이스용 마그네슘의 자기연마가공에서 영구자석의 효과 (The effect of permanent magnet in MAP of magnesium alloy for external case of notebook compute)

  • 김상오;강대민;곽재섭;정영득
    • Design & Manufacturing
    • /
    • 제6권2호
    • /
    • pp.48-53
    • /
    • 2012
  • In previous study, it showed that the MAP was greatly effective polishing process for magnesium plate. But it had lower efficiency than magnetic materials such as SM45C. It was very difficult to cut non-magnetic materials using the MAP process because the process was fundamentally possible by help of a magnetic force. This study aimed to verify analytically formation of the magnetic field in a case of the non-magnetic materials especially focused on magnesium plate. So, In this study, the magnetic density flux was predicted using simulation program. As a result, the magnetic density flux was lower at the center of pole on inductor than outside. It had same result on the experimental verification. And magnetic force was lower according to increase of working gap. So, to improve the magnetic force, permanent magnet was installed under the workpiece. In that case, the magnetic density flux not only at center but also at outside of pole was increased. Therefore, the efficiency of magnetic abrasive polishing was also increased. A design of experimental method was adopted for assessment of parameters' effect on the MAP results of magnesium plate for improving the magnetic force.

  • PDF

노트북 케이스용 마그네슘의 자기연마가공에서 영구자석의 효과 (The effect of permanent magnet in MAP of magnesium alloy for external case of notebook compute)

  • 김상오;강대민;곽재섭;정영득
    • 한국금형공학회:학술대회논문집
    • /
    • 한국금형공학회 2008년도 하계 학술대회
    • /
    • pp.45-50
    • /
    • 2008
  • In previous study, it showed that the MAP was greatly effective polishing process for magnesium plate. But it had lower efficiency than magnetic materials such as SM45C. It was very difficult to cut non-magnetic materials using the MAP process because the process was fundamentally possible by help of a magnetic force. This study aimed to verify analytically formation of the magnetic field in a case of the non-magnetic materials especially focused on magnesium plate. So, In this study, the magnetic density flux was predicted using simulation program. As a result, the magnetic density flux was lower at the center of pole on inductor than outside. It had same result on the experimental verification. And magnetic force was lower according to increase of working gap. So, to improve the magnetic force, permanent magnet was installed under the workpiece. In that case, the magnetic density flux not only at center but also at outside of pole was increased. Therefore, the efficiency of magnetic abrasive polishing was also increased. A design of experimental method was adopted for assessment of parameters' effect on the MAP results of magnesium plate for improving the magnetic force.

  • PDF

자력에 의한 극청정 내면의 연마가공에 관한 연구 (Polishing of Ultra-Clean Internal Surface Using Magnetic Force)

  • 김정두;허강운
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2786-2795
    • /
    • 2000
  • Recently, the technology for internal polishing is needed for ultra-clean machining for the prevention of corrosion and pollution of parts is the area of high technology industries such as semiconductor, electronics, telecommunication optics, aerospace, and motors. In this study, an internal polishing system using the magnetic force was developed for the production of ultra-clean tubes with averaged surface roughness ranging from 0.2㎛ to 0.05㎛ or less, and magnetic abrasives composed of WC/Co powder were developed, After finding the optimal condition on each, machining characteristics using newly developed abrasive were analyzed. Form the results obtained by experimental design method, the optimal polishing condition was analyzed and, thhereafter internal polishing was done.

휴리스틱 알고리즘을 이용한 평면 자기연마 공구경로 최적화 (Tool-Path Optimization of Magnetic Abrasive Polishing Using Heuristic Algorithm)

  • 김상오;유만희;곽재섭
    • 한국생산제조학회지
    • /
    • 제20권2호
    • /
    • pp.174-179
    • /
    • 2011
  • This paper focuses on the optimal step-over value for magnetic tool path. Since magnetic flux density is changed according to distance from center of magnetic tool. Enhanced surface roughness is also different according to change of radius. Therefore, to get a identical surface roughness on workpiece, it is necessary to find optimal tool path including step-over. In this study, response surface models for surface roughness according to change of radiuses were developed, and then optimal enhanced surface roughness for each radius was selected using genetic algorithm and simulated annealing to investigate relation between radius and surface roughness. As a result, it found that step-over value of 6.6mm is suitable for MAP of magnesium alloy.

곡면 자기연마에서의 자기력 형성과 가공특성에 관한 연구 (Evaluations of Magnetic Abrasive Polishing and Distribution of Magnetic Flux Density on the Curvature of Non-Ferrous Material)

  • 김상오;곽재섭
    • 대한기계학회논문집A
    • /
    • 제36권3호
    • /
    • pp.259-264
    • /
    • 2012
  • 비자성체의 자유곡면 자기연마 공정에서 자기력 세기의 향상은 매우 중요하다. 비자성체 자유곡면의 표면에 발생하는 자기력의 세기에 따라 자기연마 입자가 가지는 수직 절삭력이 변화하기 때문이다. 이러한 자기력 향상을 위하여 전자석 배열 테이블이 적용된 제 2세대 자기연마공정이 비자성체의 자유곡면 자기연마에 적용된다. 본 연구에서는 이러한 제 2세대 자기연마공정에서 전자석 배열 테이블에 발생하는 자기력 세기 향상을 위한 극성배열 방법을 제시하고 이를 알루미늄합금의 곡률 자기연마에 적용하였다. 그 결과 볼록 및 오목 형상에서 각각 S-N-S와 S-N-N-N-S 극성 배열에서 가장 높은 표면거칠기의 향상을 확인하였다. 또한 상승 가공경로에서 상대적으로 높은 표면거칠기 향상을 나타내었다.

실리콘 겔에 의한 자기연마가공의 성능 향상에 관한 연구 (Study on Performance Improvement in Magnetic Abrasive Polishing Assisted by Silicone Gel Medium)

  • 김상오;곽재섭
    • 대한기계학회논문집A
    • /
    • 제34권10호
    • /
    • pp.1499-1505
    • /
    • 2010
  • 유연성 공구를 가진 자기연마는 고경도 소재 및 자유곡면 형상 표면의 나노메터급 가공이 가능한 강점을 지닌다. 이러한 자기연마에서 자기연마입자는 시간적, 비용적 측면에서 단순 혼합형 입자가 유리하다. 그러나 단순혼합형 입자는 가공 중 공구로부터 쉽게 이탈하게 되어 가공 시간이 증가 할수록 매우 낮은 가공 효율을 가진다. 따라서 본 연구에서는 단순 혼합형 입자에 오일을 대신하여 실리콘 겔을 매개물로 사용하는 자기연마 입자를 연구하고 그 특성을 분석하였다. 그 결과 자기력 향상과 별개로 입자간 응집력을 높여 입자의 이탈을 줄여 표면거칠기의 향상에 효과가 높음을 확인 하였다. 그리고 실험계획법을 이용하여 고경도 소재인 텅스텐 카바이드의 실리콘 겔 자기연마에서 각 공정변수가 표면거칠기의 향상에 미치는 특성을 평가하고 이를 최적화 하였다.

마이크로 프레스에 의한 미세 펀칭 홀의 디버링 특성 (A Deburring Characteristics of Small Punching Holes using Micro Press)

  • 윤종학;안병운;박성준
    • 한국공작기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.61-67
    • /
    • 2004
  • In micro hole punching process the burr occurs inevitably, but the burr must be minimized in order to improve the quality and accuracy of the product. In this study, magnetic field-assisted polishing technique is applied to remove the burr which exists in nozzles for ink-jet printer head and proved to be a feasible for deburring by experiment. The deburring characteristics of sheet metals was investigated changing with polishing time and magnetic abrasive size. After the deburring, the burr size has remarkably reduced and roundness of the hole also has improved.

경사면의 자기연마가공 특성평가 및 표면거칠기 예측모델 (Assessment on magnetic abrasive finishing of inclined surface and prediction model for surface roughness)

  • 이정인;김상오;곽재섭
    • Design & Manufacturing
    • /
    • 제2권6호
    • /
    • pp.11-16
    • /
    • 2008
  • In order to satisfy the customer's variant needs for a product quality in recent years, a demand for developing higher precision machining technologies in a lot of application areas such as automobile, cellular phone and semiconductor has been increased more and more. Micro-magnetic induced polishing(${\mu}-MIP$) process is one of these precision technologies. In this study, to verify the parameters' effect of the ${\mu}-MIP$ process on the surface roughness improvement of the inclined workpiece, well planned experiment which was called the design of experiments was carried out. Considered parameters were spindle speed, inductor current, abrasive configuration and working gap between the workpiece and the solid tool. As a result, it was seen that the inductor current and the working gap greatly affected the surface roughness improvement. And to predict the surface roughness of the inclined workpiece, S/N ratio and first-order response surface model was developed.

  • PDF