• Title/Summary/Keyword: Magnetic Sensors

Search Result 563, Processing Time 0.028 seconds

Disturbance Elimination Performance Improvement of A Magnetic Levitation System by Array-Sensor Calibration (센서 배열의 보정에 의한 자기 부상 시스템의 외란 제거 성능 개선)

  • An, Myung-Kook;Na, Seung-You
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.278-281
    • /
    • 2002
  • In this paper we propose a controller which has the capability of disturbance measurement calibration for Cds array sensors in a magnetic levitation system. Steady state error due to environment light condition or external disturbance is corrected constantly. The correction is made by the sensors to measure the ball position of the system without additional deployment of sensors.

  • PDF

INTEGRATED MAGNETIC SENSORS: AN OVER VIEW

  • Cristolovenau, Sorin
    • The Magazine of the IEIE
    • /
    • v.13 no.1
    • /
    • pp.86-95
    • /
    • 1986
  • The basic physical principles involved in the operation of monolithic magnetic sensors are reviewed and technological aspects outlined. More or less conventional devices based on Hall effect, magnetoresistance or current path deflection are described. It is shown that such sensors with 2, 3, 4 or 5 terminal contacts are achievable with standard silicon integrated circuit process. Several kinds of magnetodiodes (p+nn+,p+n, Schottky, MOS, memory, CMOS) have been fabricated on Si and on SOS films and present attractive properties. Finally, the magneto-transistor family is discussed with emphasis to split-terminals, CMOS, unijunction and fila-mentary devices.

  • PDF

A Study on the Gap Estimation Circuit Design of the Magnetic Levitation System (자기 부상계의 변위추정 회로설계에 관한 연구)

  • Kim, C.H.;Ha, Y.W.;Sim, S.H.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.144-153
    • /
    • 1997
  • The magnetic levitation system is utilized in the magnetic bearing of high-speed rotor because of little friction, no lubrication, no noise and so on. The magnetic levitation system need the feedback controller for the stabilization of system, and gap sensors are generally used to measure the gap. The use of gap sensors brings out the increase of the number of troublesome, and the decrease of the control performance because of the dislocation between the measurement point and the control point. This paper presents the design of the gap estimation circuit for the sensorless method proposed by authors in the magnetic levitation system. We made the gap estimation circuit which was composed of both the superposition circuit and the measuring circuit. And we investigated the validity of the usefulness of the proposed sensorless method in the magnetic levitation system through results of actual experiment.

  • PDF

Developing Wearable Joystick Device Using Magnetic Sensor (자기장 센서를 이용한 웨어러블 조이스틱 장치의 개발)

  • Yeo, Hee-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.18-23
    • /
    • 2021
  • There has been demand for many magnetic sensor applications, and to develop low-cost devices, it is critical to accurately understand the behavior of the magnetic field and the characteristics of magnetic sensors and target devices during initial development phase. The magnetic field has been known to have very complicated nonlinear data to calculate, so it has required expensive computing machines or research to accurately calculate the magnetic sensor values. However, this paper introduces a characteristic of a magnetic sensor called the giant magnetoresistance (GMR) and proposes simple and sufficient approaches to develop a wearable joystick device using a magnetic sensor. Particularly, this paper introduces the design factors for how to properly develop a low-cost wearable joystick device using magnetic sensors after carefully considering the mechanism of a real joystick and the characteristics of magnetic sensors. As a result, user test results are provided to show how users can operate this new wearable joystick device.

Optical Current Measuring System for Compensating Interference by Adjacent Electric Wires

  • Cho, Jae-Kyong
    • Journal of Magnetics
    • /
    • v.12 no.4
    • /
    • pp.156-160
    • /
    • 2007
  • In this paper, we analyze the errors associated with magnetic field interference for fiber-optic current sensors working in a three-phase electric system and provide a solution to compensate the interference. For many practical conductor arrangements, the magnetic filed interference may cause errors unacceptable for the accuracy requirements of the sensors. We devised a real time compensation method for the interference by introducing geometric and weight factors. We realized the method using simple electronic circuits and obtained the real time compensated outputs with errors of ${\pm}1%$.

High-Accuracy Current Sensing Technique Based on Magnetic Sensors for Three-Phase Switchboards (삼상 배전반에서 자기센서 기반의 고정밀 전류 측정 기법)

  • Lee, Sungho;Kim, Taemin;Kim, Namsu;Ahn, Youngho;Lee, Sungchul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.12
    • /
    • pp.993-998
    • /
    • 2017
  • In this paper, a high-accuracy current sensing technique for three-phase current paths in an electrical switchboard is proposed. Conventional open-style current sensors using magnetic sensors show inaccurate sensing performance with more than 10% error due to undesired magnetic field interference from neighboring paths. To increase accuracy, large and expensive current transformers with large permeabilities have been used, which increased the cost and size. The proposed technique can improve the measured magnetic field by the calculation of magnetic interference effect from neighboring current paths. The relationship between neighboring magnetic fields and the desired magnetic field is theoretically analyzed in a general case. The proposed technique is verified using magnetic field simulations in a three-phase busbar environment.

Wheastone-bridge type MR sensors of Si(001)/NiO(300 $\AA$)/NiFe bilayer system (Si(001)/NiO(300$\AA$)/NiFe계 휘스톤 브리지형 자기저항소자)

  • 이원재;민복기;송재성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1050-1053
    • /
    • 2001
  • There is great interest in developing magnetoresistance(MR) sensor, using ferromagnetic, electrically non-magnetic conducting and antiferromagnetic films, especially for the use in weak magnetic fields. Here, we report single and Wheatstone-bridge type of MR sensors made in Si(001)/HiO(300$\AA$)/NiFe bilayers. Angular dependence of MR profiles was measured in Si(001)/NiO(300$\AA$)/NiFe(450$\AA$) films as a function of an angle between current and applied field direction, also, linearity was determined. AMR characteristics of single MR sensors was well explained with single domain model. Good linearity in 45$^{\circ}$Wheatstone-bridge type of MR sensors consisting of 4 single MR sensors made in Si(001)/NiO(300$\AA$)/NiFe(450$\AA$) was shown in the range of about $\pm$50 Oe.

  • PDF

Magnetic Disturbance Model-Embedded Heading Estimation Filter for Time-Varying Magnetic Environments (시변 자기 환경에 강한 자기왜곡 모델 내장형 헤딩 추정 필터)

  • Lee, Jung Keun;Choi, Mi Jin
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.286-291
    • /
    • 2017
  • With regards to heading estimation using gyroscope and magnetometer signals, magnetic disturbance added in the magnetometer signals is a main degradation factor in the estimation accuracy. Although there are a number of existing mechanisms that may properly compensate for the magnetic disturbances, they are designed to react only to the magnetic disturbances, but not to the time derivative of disturbances. Note that the sensors may experience abrupt changes in the magnetic disturbances, particularly for ambulatory applications. This paper proposes a magnetic disturbance model-embedded heading estimation filter for time-varying magnetic environments. The proposed magnetic disturbance model is based on a first-order Markov chain with a conditional switching technique depending on the time derivative of disturbances. Once a high amount of derivative is detected, the corrupted magnetometer signals are discarded to protect the filter from them. In our experimental results, the averaged heading error of tests was $1.46^{\circ}$, while that of the original approach without switching was $5.75^{\circ}$.

Complex Modal Testing of Asymmetric Rotors Using Magnetic Exciter Equipped with Hall Sensors

  • Lee, Chong-Won;Kim, Si-Kyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.866-875
    • /
    • 2001
  • The complex modal testing methods developed for asymmetric rotors are briefly discussed and their performances are experimentally evaluated. For the experiments, a laboratory test rotor is excited by using a newly developed, cost effective magnetic exciter equipped with Hall sensors, which measure the excitation forces. It is concluded that the exciter system is characterized by a wide bandwidth and a high resolution for both the excitation and force measurement, and that the one-exciter/two-sensor technique for complex modal testing of asymmetric rotors is superior to the standard two-exciter/two-sensor technique in terms of practicality and realization.

  • PDF