• Title/Summary/Keyword: Magnetic Saturation Effect

Search Result 185, Processing Time 0.027 seconds

Effect of Shape Magnetic Anisotropy of Amorphous Fe-B-P Nanoparticles on Permeability

  • Lee, Ji Eun;Tsedenbal, Bulgan;Koo, Bon Heun;Huh, Seok Hwan
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.589-594
    • /
    • 2020
  • Many electronic applications require magnetic materials with high permeability and frequency properties. We improve the magnetic permeability of soft magnetic powder by controlling the shape magnetic anisotropy of the powders and through the preparation of amorphous nanoparticles. For this purpose, the effect of the shape magnetic anisotropy of amorphous Fe-B-P nanoparticles is observed through a magnetic field and the frequency characteristics and permeability of these amorphous nanoparticles are observed. These characteristics are investigated by analyzing the composition of particles, crystal structure, microstructure, magnetic properties, and permeability of particles. The composition, crystal structure, and microstructure of the particles are analyzed using inductively coupled plasma optical emission spectrometry-, X-ray diffraction, scanning electron microscopy and focused ion beam analysis. The saturation magnetization and permeability are measured using a vibrating sample magnetometer and an LCR meter, respectively. It is confirmed that the shape magnetic anisotropy of the particles influences the permeability. Finally, the permeability and frequency characteristics of the amorphous Fe-B-P nanoparticles are improved.

A Study on the Effect of Reducing the Saturation Magnetization by Substituting the Non magnetic Ion in Mg Mn Ferrites (Mg-Mn훼라이트의 비자성 이온첨가에 의한 포화자화 감소효과)

  • Yu, Byeong-Du;Kim, Jong-O
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.117-124
    • /
    • 1994
  • The reduction of saturation magnetization in the Mg-Mn microwave ferrites was achieved by substituting the non-magnetic A1 ion for Fe ion. It is necessary for extending the operation frequencies that there is no change in other properties of the microwave ferrites. The electrical and magnetic properties are characterized where the composition of the ferrites studied was given by the general formula $(MgO)_{1.0}(MnO)_{0.1}(Al_xFe_{1.9-x}O_{2.85}$ with x ranging from 0.1 to 0.4. The saturation magnetization and the ferromagnetic resonance linewidth was decreased by the substituting amount of $Al_2O_3$. The value of coercive field was low enough over the composition of x=O.2 and the high squareness ratio was obtained all over the amount of substitution. It is feasible to select the proper application area with the combination of various properties ; that is, low coercive field, high squareness ratio, optimum saturation magnetization and ferromagnetic resonance linewidth.

  • PDF

Dynamic Modeling of an Fine Positioner Using Magnetic Levitation (자기 부상 방식 미세 운동 기구의 동적 모델링)

  • Jeong, Gwang-Seok;Baek, Yun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1166-1174
    • /
    • 2000
  • In this paper, we introduce a positioner based on magnetic levitation to eliminate the friction which is the most severe effect to limit high resolution on the micro level. Differently from existing electromagnetic device, the proposed positioner consists of air core solenoid and permanent magnet. Although the combination produces small magnetic force, it is suitable for realizing micro motion repeatedly without the accumulation of error because there is no hysteresis caused by ferromagnetic materials, no eddy current loss, no flux saturation. First, the approximate modeling of stiffness and damping effects between the magnetic elements is made and verified experimentally. Then, we have formulated the dynamic equation of one d.o.f magnetic levitation positioner using linear perturbation method and discussed the necessity of optimization for the chief design parameters to maximize the stability performance.

Effect of Magnetic Property Modification on Current-Induced Magnetization Switching with Perpendicular Magnetic Layers and Polarization-Enhancement Layers

  • Kim, Woo-Jin;Lee, Kyung-Jin;Lee, Taek-Dong
    • Journal of Magnetics
    • /
    • v.14 no.3
    • /
    • pp.104-107
    • /
    • 2009
  • The effects of the magnetic property variation on current-induced magnetization switching in magnetic tunnel junction with perpendicular magnetic anistoropy (PMA) and the soft magnetic polarization-enhancement layers (PELs) inserted between the layers with PMA and the MgO layer was studied. A micromatnetic model was used to estimate the switching time of the free layer by different applied current densities, with changing saturation magnetization ($M_s$) of the PELs, interlayer exchange coupling between PMA layers and PELs. The switching time could be significantly reduced at low current densities, by increasing $M_s$ of PELs and decreasing interlayer exchange coupling.

The frequency and magnetic characteristics of YIG with the variation of $Al_2O_3$ additions ($Al_2O_3$조성변화에 따른 YIG의 주파수 및 자기특성)

  • 홍기원;김명호;장경욱;이준웅
    • Electrical & Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.787-794
    • /
    • 1995
  • To improvement the magnetic and frequency properties of YIG(Yttrium-Iron Garnet) in microwave region, it is investigated that the effect of $Al^{3+}$ ions on magnetic and frequency characteristics of YIG, using samples of basic YIG composition( $Y_{3}$F $e_{5}$ $O_{l2}$) added with A1$_{2}$ $O_{3}$ from 0 to 2.5 [mol%]. The measurment is conducted mainly for the structural properties and magnetical properties. The structural properties is measured using SEM(Scanning Electro Microscope), EDX(Energy-dispersive X-ray spectrometer) and XRD(X-ray diffraction equipment). The magnetical properties is measured with B-H curve tracer and impedance analyzer. As a result, it is confin-ned that the effect of eddy current loss is minimized while maintaining high saturation flux density of YIG, when YIG is added with 0.5 [mol%] of A1$_{2}$ $O_{3}$.>.>.

  • PDF

Interaction of magnetic water, silica fume and superplasticizer on fresh and hardened properties of concrete

  • Mazloom, Moosa;Miri, Sayed Mojtaba
    • Advances in concrete construction
    • /
    • v.5 no.2
    • /
    • pp.87-99
    • /
    • 2017
  • After passing through a magnetic field, the physical quality of water improves, and magnetic water (MW) is produced. There are many investigations on the effects of magnetic field on water that shows MW properties like saturation and memory effect. This study investigates the fresh and hardened properties of concrete mixed with MW, which contains silica fume (SF) and superplasticizer (SP). The test variables included the magnetic field intensity for producing MW (three kinds of water), SF content replaced cement (0 and 10 percent), water-to-cementitious materials ratio (W/CM=0.25, 0.35 and 0.45) and curing time (7, 28 and 90 days). The results of this study show that MW had a positive impact on the workability and compressive strength of concrete. By rising the intensity of the magnetic field which was used for producing MW, its positive influence on both workability and compressive strength improved. MW had greater positive impacts on samples containing SP that did not have SF. Moreover, the best compressive strength improvements of concrete achieved as W/CM ratio decreased.

Microstructure and Magnetic Characteristics of Mn-doped Finemet Nanocomposites

  • Le, Anh-Tuan;Kim, Chong-Oh;Chau Nguyen;Tho Nguyen Duc;Hoa Nguyen Quang;Lee, Hee-Bok
    • Journal of Magnetics
    • /
    • v.11 no.1
    • /
    • pp.30-35
    • /
    • 2006
  • A thorough study about the influences of Mn substitution for Fe on the microstructure and magnetic characteristics of $Fe_{73.5-x}Mn-{x}Si_{13.5}B_{9}Nb_{3}Cu_1$ (x = 1, 3, 5) alloys prepared by the melt-spinning technique has been performed. Nanocomposites composed of nanoscale $(Fe,Mn)_{3}Si$ magnetic phase embedded in an amorphous matrix were obtained by annealing their amorphous alloys at $535^{\circ}C$ for 1 hour. The addition of Mn causes a slight increase in the mean grain size. The Curie temperatures of the initial amorphous phase and of the nanocrystals phase decreased, while the Curie temperature of the remaining amorphous phase remained nearly constant with increasing Mn content. Soft magnetic properties of the crystallized samples have been significantly improved by a proper thermal treatment. Accordingly, the giant magnetoimpedance effect is observed and ascribed to the increase of the magnetic permeability, and the decrease of the coercivity of the samples. The increased magnetic permeability is resulted from a decrease in the magnetocrystalline anisotropy and saturation magnetostriction.

Fault Current Limiting and Hysteresys Characteristics of a SFCL using Magnetic Coupling of Two Coils on the Iron Core with an Air-Gap (공극이 도입된 철심에 코일의 자기결합을 이용한 초전도한류기의 고장전류 제한 및 히스테리시스 특성)

  • Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.137-142
    • /
    • 2011
  • In this paper, the fault current limiting and the hysteresys characteristics of a superconducting fault current limiter (SFCL) using magnetic coupling of two coils on the iron core with an air-gap were analyzed. The introduction of the air-gap in the SFCL with magnetically coupled two coils can suppress the saturation of the iron-core and, on the other hand, make the limiting impedance of the SFCL decreased, which results from the increase of the exciting current. To analyze the effect of the aig-gap on the fault current limiting characteristics of the SFCL, the hysteresys curves of the iron core comprising the SFCL were derived from the short-circuit experiment and the variation in the voltage-current trace of the SFCL during the fault period was analyzed. Through the comparison with the current limiting characteristics of the SFCL without air-gap, the air-gap could be confirmed to contribute to the suppression of the iron core's saturation through the increase of the SFCL's burden from the short-circuit current.

Design of Prototype Rotary-Lineat Step Motor by the Finite Element Method (유한 요소법에 의한 2자유도 스텝모터의 설계)

  • 정태경;한송엽;원종수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.12
    • /
    • pp.567-572
    • /
    • 1986
  • In this paper, a new type of step motor with two degree of mechanical freedom, which is named rotary-Linear Step Motor(RLSM), is presented. Its rotor axis can perform linear and rotary motions either separately or simultaneously. This paper discribes the design of RLSM using finite element method in which the magnetic saturation effect of the iron core is taken into account. The design parameters such as torques, forces and inductances are obtained from the computed magnetic vector potentials. A new type of Rotary-Linear Step Motor was constructed. The calculated parameters agree well with measurements.

  • PDF

Effect of Annealing on the Magnetic Anisotropy of Amorphous $Co_{89}Nb{8.5}Zr{2.5}$Thin Films ($Co_{89}Nb{8.5}Zr{2.5}$ 비정질 박막의 이방성에 미치는 열처리 효과)

  • 김현식;민복기;송재성;오영우
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.6
    • /
    • pp.486-492
    • /
    • 1998
  • The amorphous Co-based magnetic films have a large saturation flux density, a low coercive force, and a zero magnetostriction constant. Therefore, they have been studied for application to magnetic recoding heads and micro magnetic devices. However, it was found that the magnetic anisotropy was changed for each film fabrication processes. In this study, we investigated how to control the anisotropy of sputtered amorphous $Co_{89}Nb{8.5}Zr{2.5}$ films. After deposition, the rotational field annealing ant the uniaxial field annealing were performed under the magnetic field of 1.5 kOe. the annealing was done at the temperature range from 400 to $600^{\circ}C$ for one hour. As-deposited amorphous $Co_{89}Nb{8.5}Zr{2.5}$ thin film had saturation magnetization ($4\piM_5$) of 0.8 T, coercive force($_IH_C$) of 1.5 Oe, and anisotropy field($H_k$) of 11 Oe. The amorphous $Co_{89}Nb{8.5}Zr{2.5}$ thin films annealed by rotational field annealing at $500^{\circ}C$ for one hour was found to be isotropy, and $4\piM_5$ of 0.9 T was obtained from these films, Also, the magnetic anisotropy of as-deposited films could be controlled by uniaxial field annealing at $400^{\circ}C$ for one hour. Anisotropy field($H_k$) of 17 Oe and $4\piM_5$ of 1.0 T were obtained by this method.

  • PDF