• Title/Summary/Keyword: Magnetic Resonance(MR) diffusion

Search Result 116, Processing Time 0.021 seconds

Pearls and Potential Pitfalls for Correct Diagnosis of Ovarian Cystadenofibroma in MRI: A Pictorial Essay

  • Giacomo Avesani;Gianluca Caliolo;Benedetta Gui;Federica Petta;Camilla Panico;Viviana La Manna;Francesca Moro;Antonia Carla Testa;Giovanni Scambia;Riccardo Manfredi
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1809-1821
    • /
    • 2021
  • Ovarian cystadenofibroma is a benign ovarian tumor that is characterized by a consistent percentage of masses, which remain indeterminate in ultrasonography and require magnetic resonance (MR) investigation; they may mimic borderline or malignant lesions. Three main morphologic patterns, resembling different ovarian neoplasms, can be identified in cystadenofibromas: multilocular solid lesions, unilocular cystic lesions with parietal thickening, and purely cystic masses. However, a cystoadenofibroma has typical features, such as T2-weighted hypointensity associated with no restrictions in diffusion-weighted imaging (the so-called "dark-dark appearance") and progressive post-contrast enhancement (type I perfusion curve). The purpose of this study was to review the features of ovarian cystadenofibromas in MR imaging and to suggest pearls and pitfalls regarding their correct diagnosis.

Acute Cerebral Infarction in a Rabbit Model: Perfusion and Diffusion MR Imaging (가토의 급성 뇌경색에서 관류 및 확산강조 자기공명영상)

  • Heo Suk-Hee;Yim Nam-Yeol;Jeong Gwang-Woo;Yoon Woong;Kim Yun-Hyeon;Jeong Young-Yeon;Chung Tae-Woong;Kim Jeong;Park Jin-Gyoon;Kang Heoung-Keun;Seo Jeong-Jin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.2
    • /
    • pp.116-123
    • /
    • 2003
  • Purpose : The present study was undertaken to evaluate the usefulness of cerebral diffusion (DWI) and perfusion MR imaging (PWI) in rabbit models with hyperacute cerebral ischemic infarction. Materials and Methods : Experimental cerebral infarction were induced by direct injection of mixture of Histoacryl glue, lipiodol, and tungsten powder into the internal cerebral artery of 6 New-Zealand white rabbits, and they underwent conventional T1 and T2 weighted MR imaging, DWI, and PWI within 1 hour after the occlusion of internal cerebral artery. The PWI scan for each rabbit was obtained at the level of lateral ventricle and 1cm cranial to the basal ganglia. By postprocessing using special imaging software, perfusion images including cerebral blood volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT) maps were obtained. The detection of infarcted lesion were evaluated on both perfusion maps and DWI. MTT difference time were measured in the perfusion defect lesion and symmetric contralateral normal cerebral hemisphere. Results : In all rabbits, there was no abnormal signal intensity on T2WI. But on DWI, abnormal high signal intensity, suggesting cerebral infarction, were detected in all rabbits. PWI (rCBV, CBF and MTT map) also showed perfusion defect in all rabbits. In four rabbits, the calculated square of perfusion defect in MTT map is larger than that of CBF map and in two rabbits, the calculated size of perfusion defect in MTT map and CBF map is same. Any rabbits do not show larger perfusion defect on CBF map than MTT map. In comparison between CBF map and DWI, 3 rabbits show larger square of lesion on CBF map than on DWI. The others shows same square of lesion on both technique. The size of lesion shown in 6 MTT map were larger than DWI. In three cases, the size of lesion shown in CBF map is equal to DWI. But these were smaller than MTT map. The calculated square of lesion in CBF map, equal to that of DWI and smaller than MTT map was three. And in one case, the calculated square of perfusion defect in MTT map was largest, and that of DWI was smallest. Conclusion : DWI and PWI may be useful in diagnosing hyperacute cerebral ischemic infarction and in e-valuating the cerebral hemodynamics in the rabbits.

  • PDF

Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging for Language Mapping in Brain Tumor Surgery: Validation With Direct Cortical Stimulation and Cortico-Cortical Evoked Potential

  • Koung Mi Kang;Kyung Min Kim;In Seong Kim;Joo Hyun Kim;Ho Kang;So Young Ji;Yun-Sik Dho;Hyongmin Oh;Hee-Pyoung Park;Han Gil Seo;Sung-Min Kim;Seung Hong Choi;Chul-Kee Park
    • Korean Journal of Radiology
    • /
    • v.24 no.6
    • /
    • pp.553-563
    • /
    • 2023
  • Objective: Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging-derived tractography (DTI-t) contribute to the localization of language areas, but their accuracy remains controversial. This study aimed to investigate the diagnostic performance of preoperative fMRI and DTI-t obtained with a simultaneous multi-slice technique using intraoperative direct cortical stimulation (DCS) or corticocortical evoked potential (CCEP) as reference standards. Materials and Methods: This prospective study included 26 patients (23-74 years; male:female, 13:13) with tumors in the vicinity of Broca's area who underwent preoperative fMRI and DTI-t. A site-by-site comparison between preoperative (fMRI and DTI-t) and intraoperative language mapping (DCS or CCEP) was performed for 226 cortical sites to calculate the sensitivity and specificity of fMRI and DTI-t for mapping Broca's areas. For sites with positive signals on fMRI or DTI-t, the true-positive rate (TPR) was calculated based on the concordance and discordance between fMRI and DTI-t. Results: Among 226 cortical sites, DCS was performed in 100 sites and CCEP was performed in 166 sites. The specificities of fMRI and DTI-t ranged from 72.4% (63/87) to 96.8% (122/126), respectively. The sensitivities of fMRI (except for verb generation) and DTI-t were 69.2% (9/13) to 92.3% (12/13) with DCS as the reference standard, and 40.0% (16/40) or lower with CCEP as the reference standard. For sites with preoperative fMRI or DTI-t positivity (n = 82), the TPR was high when fMRI and DTI-t were concordant (81.2% and 100% using DCS and CCEP, respectively, as the reference standards) and low when fMRI and DTI-t were discordant (≤ 24.2%). Conclusion: fMRI and DTI-t are sensitive and specific for mapping Broca's area compared with DCS and specific but insensitive compared with CCEP. A site with a positive signal on both fMRI and DTI-t represents a high probability of being an essential language area.

Laplacian-Regularized Mean Apparent Propagator-MRI in Evaluating Corticospinal Tract Injury in Patients with Brain Glioma

  • Rifeng Jiang;Shaofan Jiang;Shiwei Song;Xiaoqiang Wei;Kaiji Deng;Zhongshuai Zhang;Yunjing Xue
    • Korean Journal of Radiology
    • /
    • v.22 no.5
    • /
    • pp.759-769
    • /
    • 2021
  • Objective: To evaluate the application of laplacian-regularized mean apparent propagator (MAPL)-MRI to brain glioma-induced corticospinal tract (CST) injury. Materials and Methods: This study included 20 patients with glioma adjacent to the CST pathway who had undergone structural and diffusion MRI. The entire CSTs of the affected and healthy sides were reconstructed, and the peritumoral CSTs were manually segmented. The morphological characteristics of the CST (track number, average length, volume, displacement of the affected CST) were examined and the diffusion parameter values, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), mean squared displacement (MSD), q-space inverse variance (QIV), return-to-origin probability (RTOP), return-to-axis probabilities (RTAP), and return-to-plane probabilities (RTPP) along the entire and peritumoral CSTs, were calculated. The entire and peritumoral CST characteristics of the affected and healthy sides as well as those relative CST characteristics of the patients with motor weakness and normal motor function were compared. Results: The track number, volume, MD, RD, MSD, QIV, RTAP, RTOP, and RTPP of the entire and peritumoral CSTs changed significantly for the affected side, whereas the AD and FA changed significantly only in the peritumoral CST (p < 0.05). In patients with motor weakness, the relative MSD of the entire CST, QIV of the entire and peritumoral CSTs, and the AD, MD, RD of the peritumoral CST were significantly higher, whereas the RTPP of the entire and peritumoral CSTs and the RTOP of the peritumoral CST were significantly lower than those in patients with normal motor function (p < 0.05 for all). In contrast, no significant changes were found in the CST morphological characteristics, FA, or RTAP (p > 0.05 for all). Conclusion: MAPL-MRI is an effective approach for evaluating microstructural changes after CST injury. Its sensitivity may improve when using the peritumoral CST features.

High-Resolution Contrast-Enhanced 3D-Spoiled Gradient-Recalled Imaging for Evaluation of Intracranial Vertebral Artery and Posterior Inferior Cerebellar Artery in Lateral Medullary Infarction (고해상도 조영증강 삼차원 회손기울기 회상 영상을 이용한 측면연수경색 환자의 두개내 척추동맥 및 뒤아래소뇌동맥 평가)

  • Yoon, Youngno;Ahn, Sung Jun;Suh, Sang Hyun;Park, Ah Young;Chung, Tae-Sub
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.1
    • /
    • pp.17-24
    • /
    • 2014
  • Purpose : To determine whether high-resolution contrast-enhanced three dimensional imaging with spoiled gradient-recalled sequence (HR-CE 3D-SPGR) plays a meaningful role in the assessment of intracranial vertebral artery (ICVA) and posterior inferior cerebellar artery (PICA) in lateral medullary infarction (LMI). Materials and Methods: Twenty-five patients confirmed with LMI were retrospectively enrolled with approval by the IRB of our institute, and 3T MRI with HR-CE 3D-SPGR and contrast-enhanced magnetic resonance angiography (CE-MRA) were performed. Two radiologists who were blinded to clinical information and other brain MR images including diffusion weighted image independently evaluated arterial lesions in ICVA and PICA. The demographic characteristics, the area of LMI and cerebellar involvement were analyzed and compared between patients with arterial lesion in ICVA only and patients with arterial lesions in both ICVA and PICA on HR-CE 3D-SPGR. Results: Twenty-two of twenty-five LMI patients had arterial lesions in ICVA or PICA on HR-CE 3D SPGR. However twelve arterial lesions in PICA were not shown on CE-MRA. Concurrent cerebellar involvement appeared more in LMI patients with arterial lesion in ICVA and PICA than those with arterial lesion in ICVA alone (p = 0.069). Conclusion: HR-CE 3D-SPGR can help evaluate arterial lesions in ICVA and PICA for LMI patients.

Analysis of Image Distortion on Magnetic Resonance Diffusion Weighted Imaging

  • Cho, Ah Rang;Lee, Hae Kag;Yoo, Heung Joon;Park, Cheol-Soo
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.381-386
    • /
    • 2015
  • The purpose of this study is to improve diagnostic efficiency of clinical study by setting up guidelines for more precise examination with a comparative analysis of signal intensity and image distortion depending on the location of X axial of object when performing magnetic resonance diffusion weighted imaging (MR DWI) examination. We arranged the self-produced phantom with a 45 mm of interval from the core of 44 regent bottles that have a 16 mm of external diameter and 55 mm of height, and were placed in 4 rows and 11 columns in an acrylic box. We also filled up water and margarine to portrait the fat. We used 3T Skyra and 18 Channel Body array coil. We also obtained the coronal image with the direction of RL (right to left) by using scan slice thinkness 3 mm, slice gap: 0mm, field of view (FOV): $450{\times}450mm^2$, repetition time (TR): 5000 ms, echo time (TE): 73/118 ms, Matrix: $126{\times}126$, slice number: 15, scan time: 9 min 45sec, number of excitations (NEX): 3, phase encoding as a diffusion-weighted imaging parameter. In order to scan, we set b-value to $0s/mm^2$, $400s/mm^2$, and $1,400s/mm^2$, and obtained T2 fat saturation image. Then we did a comparative analysis on the differences between image distortion and signal intensity depending on the location of X axial based on iso-center of patient's table. We used "Image J" as a comparative analysis programme, and used SPSS v18.0 as a statistic programme. There was not much difference between image distortion and signal intensity on fat and water from T2 fat saturation image. But, the average value depends on the location of X axial was statistically significant (p < 0.05). From DWI image, when b-value was 0 and 400, there was no significant difference up to $2^{nd}$ columns right to left from the core of patient's table, however, there was a decline in signal intensity and image distortion from the $3^{rd}$ columns and they started to decrease rapidly at the $4^{th}$ columns. When b-value was 1,400, there was not much difference between the $1^{st}$ row right to left from the core of patient's table, however, image distortion started to appear from the $2^{nd}$ columns with no change in signal intensity, the signal was getting decreased from the $3^{rd}$ columns, and both signal intensity and image distortion started to get decreased rapidly. At this moment, the reagent bottles from outside out of 11 reagent bottles were not verified from the image, and only 9 reagent bottles were verified. However, it was not possible to verify anything from the $5^{th}$ columns. But, the average value depends on the location of X axial was statistically significant. On T2 FS image, there was a significant decline in image distortion and signal intensity over 180mm from the core of patient's table. On diffusion-weighted image, there was a significant decline in image distortion and signal intensity over 90 mm, and they became unverifiable over 180 mm. Therefore, we should make an image that has a diagnostic value from examinations that are hard to locate patient's position.

Tumor Margin Infiltration in Soft Tissue Sarcomas: Prediction Using 3T MRI Texture Analysis (연조직 육종의 종양 가장자리 침윤: 3T 자기공명영상 텍스처 분석을 통한 예측)

  • Minji Kim;Won-Hee Jee;Youngjun Lee;Ji Hyun Hong;Chan Kwon Jung;Yang-Guk Chung;So-Yeon Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.1
    • /
    • pp.112-126
    • /
    • 2022
  • Purpose To determine the value of 3 Tesla (T) MRI texture analysis for predicting tumor margin infiltration in soft tissue sarcomas. Materials and Methods Thirty-one patients who underwent 3T MRI and had a pathologically confirmed diagnosis of soft tissue sarcoma were included in this study. Margin infiltration on pathology was used as the gold standard. Texture analysis of soft tissue sarcomas was performed on axial T1-weighted images (WI) and T2WI, fat-suppressed contrast-enhanced (CE) T1WI, diffusion-weighted images (DWI) with b-value of 800 s/mm2, and apparent diffusion coefficient (ADC) was mapped. Quantitative parameters were compared between sarcomas with infiltrative margins and those with circumscribed margins. Results Among the 31 patients with soft tissue sarcomas, 23 showed tumor margin infiltration on pathology. There were significant differences in kurtosis with the spatial scaling factor (SSF) of 0 and 6 on T1WI, kurtosis (SSF, 0) on CE-T1WI, skewness (SSF, 0) on DWI, and skewness (SSF, 2, 4) on ADC between sarcomas with infiltrative margins and those with circumscribed margins (p ≤ 0.046). The area under the receiver operating characteristic curve based on MR texture features for identification of infiltrative tumor margins was 0.951 (p < 0.001). Conclusion MR texture analysis is reliable and accurate for the prediction of infiltrative margins of soft tissue sarcomas.

Software development for the visualization of brain fiber tract by using 24-bit color coding in diffusion tensor image

  • Oh, Jung-Su;Song, In-Chan;Ik hwan Cho;Kim, Jong-Hyo;Chang, Kee-Hyun;Park, Kwang-Suk
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.133-133
    • /
    • 2002
  • Purpose: The purpose of paper is to implement software to visualize brain fiber tract using a 24-bit color coding scheme and to test its feasibility. Materials and Methods: MR imaging was performed on GE 1.5 T Signa scanner. For diffusion tensor image, we used a single shot spin-echo EPI sequence with 7 non-colinear pulsed-field gradient directions: (x, y, z):(1,1,0),(-1,1,0),(1,0,1),(-1,0,1),(0,1,1),(0,1,-1) and without diffusion gradient. B-factor was 500 sec/$\textrm{mm}^2$. Acquisition parameters are as follows: TUTE=10000ms/99ms, FOV=240mm, matrix=128${\times}$128, slice thickness/gap=6mm/0mm, total slice number=30. Subjects consisted of 10 normal young volunteers (age:21∼26 yrs, 5 men, 5 women). All DTI images were smoothed with Gaussian kernel with the FWHM of 2 pixels. Color coding schemes for visualization of directional information was as follows. HSV(Hue, Saturation, Value) color system is appropriate for assigning RGB(Red, Green, and Blue) value for every different directions because of its volumetric directional expression. Each of HSV are assigned due to (r,$\theta$,${\Phi}$) in spherical coordinate. HSV calculated by this way can be transformed into RGB color system by general HSV to RGB conversion formula. Symmetry schemes: It is natural to code the antipodal direction to be same color(antipodal symmetry). So even with no symmetry scheme, the antipodal symmetry must be included. With no symmetry scheme, we can assign every different colors for every different orientation.(H =${\Phi}$, S=2$\theta$/$\pi$, V=λw, where λw is anisotropy). But that may assign very discontinuous color even between adjacent yokels. On the other hand, Full symmetry or absolute value scheme includes symmetry for 180$^{\circ}$ rotation about xy-plane of color coordinate (rotational symmetry) and for both hemisphere (mirror symmetry). In absolute value scheme, each of RGB value can be expressed as follows. R=λw|Vx|, G=λw|Vy|, B=λw|Vz|, where (Vx, Vy, Vz) is eigenvector corresponding to the largest eigenvalue of diffusion tensor. With applying full symmetry or absolute value scheme, we can get more continuous color coding at the expense of coding same color for symmetric direction. For better visualization of fiber tract directions, Gamma and brightness correction had done. All of these implementations were done on the IDL 5.4 platform.

  • PDF

Detection of Contralateral Breast Cancer Using Diffusion-Weighted Magnetic Resonance Imaging in Women with Newly Diagnosed Breast Cancer: Comparison with Combined Mammography and Whole-Breast Ultrasound

  • Su Min Ha;Jung Min Chang;Su Hyun Lee;Eun Sil Kim;Soo-Yeon Kim;Yeon Soo Kim;Nariya Cho;Woo Kyung Moon
    • Korean Journal of Radiology
    • /
    • v.22 no.6
    • /
    • pp.867-879
    • /
    • 2021
  • Objective: To compare the screening performance of diffusion-weighted (DW) MRI and combined mammography and ultrasound (US) in detecting clinically occult contralateral breast cancer in women with newly diagnosed breast cancer. Materials and Methods: Between January 2017 and July 2018, 1148 women (mean age ± standard deviation, 53.2 ± 10.8 years) with unilateral breast cancer and no clinical abnormalities in the contralateral breast underwent 3T MRI, digital mammography, and radiologist-performed whole-breast US. In this retrospective study, three radiologists independently and blindly reviewed all DW MR images (b = 1000 s/mm2 and apparent diffusion coefficient map) of the contralateral breast and assigned a Breast Imaging Reporting and Data System category. For combined mammography and US evaluation, prospectively assessed results were used. Using histopathology or 1-year follow-up as the reference standard, cancer detection rate and the patient percentage with cancers detected among all women recommended for tissue diagnosis (positive predictive value; PPV2) were compared. Results: Of the 30 cases of clinically occult contralateral cancers (13 invasive and 17 ductal carcinoma in situ [DCIS]), DW MRI detected 23 (76.7%) cases (11 invasive and 12 DCIS), whereas combined mammography and US detected 12 (40.0%, five invasive and seven DCIS) cases. All cancers detected by combined mammography and US, except two DCIS cases, were detected by DW MRI. The cancer detection rate of DW MRI (2.0%; 95% confidence interval [CI]: 1.3%, 3.0%) was higher than that of combined mammography and US (1.0%; 95% CI: 0.5%, 1.8%; p = 0.009). DW MRI showed higher PPV2 (42.1%; 95% CI: 26.3%, 59.2%) than combined mammography and US (18.5%; 95% CI: 9.9%, 30.0%; p = 0.001). Conclusion: In women with newly diagnosed breast cancer, DW MRI detected significantly more contralateral breast cancers with fewer biopsy recommendations than combined mammography and US.

Usefulness of High-B-value Diffusion - Weighted MR Imaging for the Pre-operative Detection of Rectal Cancers (B-values 변환 자기공명영상: 국소 직장암 수술 전 검출을 위한 적합한 b-value 유용성)

  • Lee, Jae-Seung;Goo, Eun-Hoe;Lee, Sun-Yeob;Park, Cheol-Soo;Choi, Ji-Won
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.683-690
    • /
    • 2009
  • The purpose of this study is to evaluate the usefulness of high-b-values diffusion weighted magnetic resonance imaging for the preoperative detection of focal rectum cancers. 60patients with diffusion weighted imaging were evaluated for the presence of rectal cancers. Forty were male and twenty were female, and their ages ranged from 38 to 71 (mean, 56) years. Used equipment was 1.5Tesla MRI((GE, General Electric Medical System, Excite HD). Examination protocols were used the fast spin echo T2, T1 weighted imaging. All examination protocols were performed by the same location with diffusion weighted imaging for accuracy detection. The b-values used in DWI were 250, 500, 750, 1000. 1500, 2000$(s/mm^2)$. The rectum, bladder to tumor contrast-to-noise ratio (CNR) of MR images were quantitativlely analyzed using GE software Functool tool, four experienced radiologists and three radiotechnologists qualitatively evaluated image quality in terms of image artifacts, lesion conspicuity and rectal wall. These data were analysed by using ANOVA and Freedman test with each b-value(p<0.05). Contrast to noise ratio of rectum, bladder and tumor in b-value 1000 were 27.21, 24.44, respectively(p<0.05) and aADC value was $0.73\times10^{-3}$. As a qualitative analysis, the conspicuity and discrimination from the rectal wall of lesions were high results as $4.0\pm0.14$, $4.4\pm0.16$ on b-value 1000(p<0.05), image artifacts were high results as $4.8\pm0.25$ on b-value 2000(p<0.05). In conclusion, DWI was provided useful information with depicting the pre-operative detection of rectal cancers, High-b-value 1000 image was the most excellent DWI value.