• Title/Summary/Keyword: Magnetic Property

Search Result 665, Processing Time 0.023 seconds

Structure and magnetic properties of CrN thin films on La0.67Sr0.33MnO3

  • Zhang, Dingbo;Zhou, Zhongpo;Wang, Haiying;Wang, Tianxing;Lu, Zhansheng;Yang, Zongxian;Ai, Zhiwei;Wu, Hao;Liu, Chang
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1320-1326
    • /
    • 2018
  • High crystalline quality CrN thin films have been grown on $La_{0.67}Sr_{0.33}MnO_3$ (LSMO) templates by molecular beam epitaxy. The structure and magnetic properties of CrN/LSMO heterojunctions are investigated combining with the experiments and the first-principles simulation. The N?el temperature of the CrN/LSMO samples is found to be 281 K and the saturation magnetization of CrN/LSMO increases compared to that of LSMO templates. The magnetic property of CrN/LSMO heterostructures mainly comes from Cr atoms of (001) CrN and Mn atoms of (001) LSMO. The (001) LSMO induces and couples the spin of the CrN sublattice at CrN/LSMO interface.

A Study of Magnetic Field Annealing on Microstructures and Magnetic Properties of Nanocomposite Sm-Co/Co Films

  • Yang, Choong-Jin;You, Cai-Yin;Zhang, Z.D.;Kim, Kyung-Soo;Han, Jong-Soo
    • Journal of Magnetics
    • /
    • v.7 no.2
    • /
    • pp.45-50
    • /
    • 2002
  • A magnetic field annealing is firstly used for nanostructured Sm-Co/Co films, prepared by magnetron sputtering method. The effects of magnetic field annealing on single-layered Sm-Co films are different from those on multi-layered Sm-Co/Co films. A detailed analysis of microstructures and magnetic properties is made by means of HRTEM, Auger electron spectroscopy, XRD and Physical Property Measurement System (PPMS). From magnetic properties and microstructure analysis, it was confirmed that these differences originate from the effects of magnetic field annealing on crystallization behavior of the films. The relationship between magnetic properties and microstructures explains a different demagnetization process of single-layered and multilayered films. For the single-layered Sm-Co films, magnetic-field-annealing makes the main phases change from $CaCu_5/ to Zn_2Th_{17}$ structure, resulting in a decrease of coercivity. The results show that the magnetic-field-annealing is useful to improve the properties of nanostructured Sm-Co(30 nm)/Co(10 nm) films, which ascribe to improving the pinning effectiveness in coercivity mechanism and decreasing the magnetostatic interaction of films. A very high coercivity about 0.7 T was obtained from nanoscaled multi-layered Sm-Co(30 nm)-/Co(10 nm) films.

The Fabrication of Cobalt Nanopowder by Sonochemical Polyol Synthesis of Cobalt Hydroxide and Magnetic Separation Method (수산화코발트의 초음파 폴리올 합성과 자성 선별법을 이용한 코발트 나노 분말의 제조)

  • Byun, Jong Min;Choi, Myoung Hwan;Shim, Chang Min;Kim, Ji Young;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.22 no.1
    • /
    • pp.39-45
    • /
    • 2015
  • In this study, cobalt nanopowder is fabricated by sonochemical polyol synthesis and magnetic separation method. First, sonochemical polyol synthesis is carried out at $220^{\circ}C$ for up to 120 minutes in diethylene glycol ($C_4H_{10}O_3$). As a result, when sonochemical polyol synthesis is performed for 50 minutes, most of the cobalt precursor ($Co(OH)_2$) is reduced to spherical cobalt nanopowder of approximately 100 nm. In particular, aggregation and growth of cobalt particles are effectively suppressed as compared to common polyol synthesis. Furthermore, in order to obtain finer cobalt nanopowder, magnetic separation method using magnetic property of cobalt is introduced at an early reduction stage of sonochemical polyol synthesis when cobalt and cobalt precursor coexist. Finally, spherical cobalt nanopowder having an average particle size of 22 nm is successfully separated.

A Study on the Prefilter to Protect Overshoot of Active Magnetic Bearing using Integral Type LQR-design Method (적분형 LQR 설계 기법을 이용한 능동자기베어링의 오버슈트 방지용 입력필터에 관한 연구)

  • Kang, Seong-Gu;Lee, Kee-Seok;Chung, Jun-Mo;Shin, Woo-Cheol;Hong, Jun-Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • Active magnetic bearing has been adopted to support the rotor by electomagnetic force without mechanical contact and lubrication process. A property of the control system for magnetic bearing is improved in accordance with making higher system gain. If the control system has integral part, an excessive overshoot response is shown by making higher integral gain. Therefore, this paper suggests a PID control system in order to eliminate the overshoot at the first stage and improve response characteristics to an impact disturbance at the status of levitation. The control gain was obtained by LQR design method which has the structure of I-PD control system in the state space. The PID control system containing prefilter has the same structure as the I-PD control system. Therefore, the PID control system adopted is able to be tuned by LQR design method. Finally, this paper shows the effect of the prefilter on the active magnetic bearing system through response experiments for levitation responses.

A Study on the Optimal Magnet for ECR (ECR 용 최적 마그네트에 관한 연구)

  • Kim, Y.T.;Kim, Y.J.;Kim, K.S.;Lee, Y.J.;Son, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.649-652
    • /
    • 1992
  • ECR(Electron Cyclotron Resonance) occure at ${\omega}_c$=${\omega}$, ${\omega}_c$:electron cycltron frequency, ${\omega}$:electromagnetic wave frequency. ECR system have several merit, 1) power transefer efficiency 2) low neutral gas pressure (below 1 mTorr) 3) high plasma density($10^{12}$ $cm^{-3}$). It is applicated variously in the field of semiconductor and new materials as the manufacturing equipment. Magnetic field in ECR system contruct resonance layer (${\omega}$=2.45GHz, $B_z$=875 Gauss) and control plasma. Plasma is almost generated at resonance layer. If the distance between substrate and resonance layer is short, uniformity of plasma is related with profile of resonance layer. Plasma have the property "Cold in Field", so directonality of magnetic field is one of the control factors of anisotropic etching. In this study, we calculate B field and flux line distribution, optimize geometry and submagnet current and improve of magnetic field directionality (99.9%) near substrate. For the purpose of calculation, vector potential A(r,z) and magnetic field B(r,z), green function and numerical integration is used. Object function for submagnet optimization is magnetic field directionality on the substrate and Powell method is used as optimization skim.

  • PDF

Production of (R)-Ethyl-4-Chloro-3-Hydroxybutanoate Using Saccharomyces cerevisiae YOL151W Reductase Immobilized onto Magnetic Microparticles

  • Choo, Jin Woo;Kim, Hyung Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1810-1818
    • /
    • 2015
  • For the synthesis of various pharmaceuticals, chiral alcohols are useful intermediates. Among them, (R)-ethyl-4-chloro-3-hydroxybutanoate ((R)-ECHB) is an important building block for the synthesis of L-carnitine. (R)-ECHB is produced from ethyl-4-chloro-3-oxobutanoate (ECOB) by a reductase-mediated, enantioselective reduction reaction. The Saccharomyces cerevisiae YOL151W reductase that is expressed in Escherichia coli cells exhibited an enantioselective reduction reaction toward ECOB. By virtue of the C-terminal His-tag, the YOL151W reductase was purified from the cell-free extract using Ni2+-NTA column chromatography and immobilized onto Ni2+-magnetic microparticles. The physical properties of the immobilized reductase (Imm-Red) were measured using electron microscopy, a magnetic property measurement system, and a zeta potential system; the average size of the particles was approximately 1 μm and the saturated magnetic value was 31.76 emu/g. A neodymium magnet was used to recover the immobilized enzyme within 2 min. The Imm-Red showed an optimum temperature at 45℃ and an optimum pH at 6.0. In addition, Bacillus megaterium glucose dehydrogenase (GDH) was produced in the E. coli cells and was used in the coupling reaction to regenerate the NADPH cofactor. The reduction/oxidation coupling reaction composed of the Imm-Red and GDH converted 20 mM ECOB exclusively into (R)-ECHB with an e.e.p value of 98%.

A Study of Relationship between Magnetic Properties and Microstructure of CoNiCr/Cr Double Layer Thin Film Magnetic Recording Media (자기기록매체 CoNiCr/Cr 이중박막의 자기적 성질과 미세구조와의 관계연구)

  • 김희삼;남인탁;홍양기
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.3
    • /
    • pp.215-220
    • /
    • 1993
  • Microstructural dependence of magnetic property of RF/DC sputtered $Co_{69.0}Ni_{18.5}Cr_{12.5}/Cr$ double layer thin film was studied. Grain size was found to be decreased with substrate temperature in the range of $100-200^{\circ}C$ and Cr underlayer thickness(from $500\;{\AA}-2000\;{\AA}$). The peaks (200) and (1120) of X-ray diffraction patterns were evidently grown with the substrate temperature for the Cr underlayer and magnetic layer, respectively. The CoNiCr magnetic layer was found to be well epitaxialy grown on Cr underlayer, and subsequently the coercivity was enhanced.

  • PDF

Magnetic-field-tuned Insulator to Conductor Transition in Magnetorheological Suspension

  • Yang, Xiongbo;Jiang, Yuhuan;Huang, Yuehua;Xu, Ruizhen;Piao, Hongguang;Jia, Gaomeng;Tan, Xinyu
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.345-348
    • /
    • 2014
  • Magnetorheological suspensions (MRSs) are smart materials that have the potential to revolutionize several industrial sectors because of their special rheological behaviors. In this paper, MRS, based on carbonyl iron (CI) microparticles that were dispersed in silicone oil with oleic acid, were prepared. We showed that the electroconductibility of MRS was significantly influenced by the intensity of the external magnetic field that was applied. The resistance value can vary from infinite to below $300{\Omega}$ after applying an external magnetic field. The results indicated that this MRS had the property of magnetic-field-tuned insulator to conductor transition. This system has potential applications in controllable MRS electrical devices.

Superconductivty and magnetic properties of $(Ru_{1-x}Nb_x)Sr_2(Sm_{1.4}Ce_{0.6})Cu_2O_z$

  • Lee, H.K.;Bae, S.M.;Lee, J.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.1-4
    • /
    • 2013
  • We investigated the effect of Nb substitution for Ru on the structural and magnetic properties of $(Ru_{1-x}Nb_x)\;Sr_2(Sm_{1.4}Ce_{0.6})Cu_2O_z$ Samples. X-ray diffraction measurements indicated that nearly single-phase samples are formed in the range from x = 0 to 1.0. The superconducting transition temperature determined from the inflection in the field-cooled magnetic susceptibility decreased only slightly from $T_c$ = 25 K for x = 0 to $T_c$ = 22 K for x = 1.0, in consistent with the change in room temperature thermopower of the samples. However, the Nb substitution for Ru above x = 0.25 significantly suppressed the weak ferromagnetic component of the field-cooled magnetic susceptibility. It was also found that the Nb substitution for Ru results in an enhanced diamagnetic susceptibility with Nb content above x = 0.5 in both zero field-cooled and field-cooled magnetization measurements, in contrast to the behavior of the samples with $x{\leq}0.5$ in which the diamagnetic susceptibility decreases as the Nb content increases.

A Study on the Vibration Characteristics of MR Elastomers Based on Silicon (실리콘기반 자기유변탄성체의 진동특성 연구)

  • Park, Jeong-Heon;Lee, Chul-Hee;Kim, Cheol-Hyun;Cho, Won-Oh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.8
    • /
    • pp.714-719
    • /
    • 2011
  • This paper presents vibration characteristics of magnetorheological(MR) elastomer, whose elastic modulus are controllable by applied magnetic field. By using this property, the material can be applied to vibration absorber, so that the stiffness of the absorber can be changed and actively controlled according to the magnetic flux density. However, the various performances of MR elastomer depends on different polarized direction of particles by applied magnetic field and dimension during the manufacturing process. In this paper, in order to obtain the optimal characteristics of MR elastomer, MR elastomers with different types and dimensions are prepared for a series tests. Using this test setup, extent of natural frequency shifted against magnetic field at various excitation frequencies can be measured. Specimens are prepared with 3 types, as cylinder samples exposed to magnetic field vertically, horizontally and unexposed during cure, respectively. Also, a set of design variables are considered to produce MR elastomers. Through the modal tests of mass structure with MR elastomer, the optimal design as well as the polarization direction of MR elastomer is obtained among the various dimensions and 3 directional types of MR elastomers.