• Title/Summary/Keyword: Magnetic Marker

Search Result 67, Processing Time 0.024 seconds

Dorsal midline cutaneous stigmata associated with occult spinal dysraphism in pediatric patients

  • Sung, Hyun Jung;Lee, Hyun-Seung
    • Clinical and Experimental Pediatrics
    • /
    • v.62 no.2
    • /
    • pp.68-74
    • /
    • 2019
  • Purpose: To investigate the prevalence of occult spinal dysraphism (OSD) and subsequent neurosurgery in pediatric patients with isolated or combined dorsal midline cutaneous stigmata with or without other congenital malformations. Methods: We carried out a retrospective review of patients who underwent sonography or magnetic resonance imaging (MRI) for OSD because of suspicion of dorsal midline cutaneous stigmata (presumed to be a marker for OSD) between January 2012 and June 2017. Information about patient characteristics, physical examination findings, spinal ultrasound and MRI results, neurosurgical notes, and accompanying congenital anomalies was collected. Results: Totally 250 patients (249 ultrasound and one MRI screening) were enrolled for analysis. Eleven patients underwent secondary MRI examinations. The prevalence of OSD confirmed by an MRI was 2.4% (6 patients including one MRI screening). Five patients (2%) had tethered cord and underwent prophylactic neurosurgery, 3 of whom had a sacrococcygeal dimple and a fibrofatty mass. Prevalence of tethered cord increased as markers associated with a sacrococcygeal dimple increased (0.5% of the isolated marker group, 8.1% of the 2-marker group, and 50% of the 3-marker group). Incidence of OSD with surgical detethering in 17 other congenital anomaly patients was 11.8%, which was higher than the 1.3% in 233 patients without other congenital anomalies. Conclusion: Our results suggest that the presence of dorsal midline cutaneous stigmata, particularly fibrofatty masses, along with a sacrococcygeal dimple is associated with OSD or cord tethering requiring surgery. OSD should be suspected in patients with concurrent occurrence of other congenital anomalies.

Synthetic Computed Tomography Generation while Preserving Metallic Markers for Three-Dimensional Intracavitary Radiotherapy: Preliminary Study

  • Jin, Hyeongmin;Kang, Seonghee;Kang, Hyun-Cheol;Choi, Chang Heon
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.172-178
    • /
    • 2021
  • Purpose: This study aimed to develop a deep learning architecture combining two task models to generate synthetic computed tomography (sCT) images from low-tesla magnetic resonance (MR) images to improve metallic marker visibility. Methods: Twenty-three patients with cervical cancer treated with intracavitary radiotherapy (ICR) were retrospectively enrolled, and images were acquired using both a computed tomography (CT) scanner and a low-tesla MR machine. The CT images were aligned to the corresponding MR images using a deformable registration, and the metallic dummy source markers were delineated using threshold-based segmentation followed by manual modification. The deformed CT (dCT), MR, and segmentation mask pairs were used for training and testing. The sCT generation model has a cascaded three-dimensional (3D) U-Net-based architecture that converts MR images to CT images and segments the metallic marker. The performance of the model was evaluated with intensity-based comparison metrics. Results: The proposed model with segmentation loss outperformed the 3D U-Net in terms of errors between the sCT and dCT. The structural similarity score difference was not significant. Conclusions: Our study shows the two-task-based deep learning models for generating the sCT images using low-tesla MR images for 3D ICR. This approach will be useful to the MR-only workflow in high-dose-rate brachytherapy.

Recognition of road information using magnetic polarity for intelligent vehicles (자계 극배치를 이용한 지능형 차량용 도로 정보의 인식)

  • Kim, Young-Min;Lim, Young-Cheol;Kim, Tae-Gon;Kim, Eui-Sun
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.409-414
    • /
    • 2005
  • For an intelligent vehicle driving which uses magnetic markers and magnetic sensors, we can get every kind of road information while moving the vehicle if we use the code that is encoded with N, S pole direction of markers. If we make it an only aim to move the vehicle, it becomes easy to control the vehicle the more we put markers close. By the way, to recognize the direction of a marker pole it is much better that the markers have no effect each other. To get road informations and move the vehicle autonomously we propose the methods of arranging magnetic sensors and algorithm of recognizing the position of the vehicle with those sensors. We verified the effectiveness of the methods with computer simulation.

High $T_c$ SQUID system for biological immunoassays

  • Enpuku, K.
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.7-7
    • /
    • 2000
  • A high $T_c$ SQUID system is developed for the application to biological immunoassay. In this application, magnetic nanoparticles are used as magnetic markers to perform immunoassay, i.e., to detect binding reaction between an antigen and its antibody. The antibody is labeled with ${\gamma}-Fe_2O_3\;(or\;Fe_3O_4)$ nanoparticles, and the binding reaction can be magnetically detected by measuring the magnetic field from the nanoparticles. Design and set up of the system is described. The system consists of (1) SQUID magnetometer or gradiometer made of 30-deg. bicrystal junctions, (2) field and compensation coils to apply the magnetic field of about 1 mT, (3) special Dewar to realize a 2 mm-distance between the SQUID and the sample, (4) two layers of cylindrical shielding to reduce the extemal magnetic noise to about 1/100, and (5) an electric slider to move the sample with a speed of 10 mm/sec. The sensitivity of the system is studied in terms of detectable magnetic flux. For the measurement bandwidth from 0.2 Hz to 10 Hz, minimum-detectable amplitude of the magnetic flux is $0.8\;m\;{\Phi}_o$ and $0.25\;m{\Phi}_o$ for the magnetometer and the gradiometer, respectively, when the magnetic field of 1 mT is applied. The difference between them is due to the residual environmental noise, and the applied magnetic field does not increase the system noise. The corresponding weight of the magnetic markers is 1 ng and 310 pg, respectively. An experiment is also conducted to measure antigen-antibody reaction with the present system. It is shown that the sensitivity of the present system is 10 times better than that of the conventional method using an optical marker. A one order of magnitude improvement of sensitivity will be realized by the sophistication of the present system.

  • PDF

Pre- and Post-Treatment Imaging of Primary Central Nervous System Tumors in the Molecular and Genetic Era

  • Sung Soo Ahn;Soonmee Cha
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1858-1874
    • /
    • 2021
  • Recent advances in the molecular and genetic characterization of central nervous system (CNS) tumors have ushered in a new era of tumor classification, diagnosis, and prognostic assessment. In this emerging and rapidly evolving molecular genetic era, imaging plays a critical role in the preoperative diagnosis and surgical planning, molecular marker prediction, targeted treatment planning, and post-therapy assessment of CNS tumors. This review provides an overview of the current imaging methods relevant to the molecular genetic classification of CNS tumors. Specifically, we focused on 1) the correlates between imaging features and specific molecular genetic markers and 2) the post-therapy imaging used for therapeutic assessment.

Numerical analysis on thermal-fluidic characteristics of the magnetic fluid in a cavity using GSMAC (GSMAC법을 이용한 밀폐된 정방형관내 자성유체의 열-유동 특성에 관한 해석적 연구)

  • Seo, Jae-Hyeong;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.997-1002
    • /
    • 2013
  • The article is aiming to investigate the thermal-fluidic characteristics of magnetic fluid in a cavity using GSMAC (generalized-simplified marker and cell method). The transport equations of the magnetic fluid are including the continuity equation, momentum equation and energy equation for natural convection and Maxwell equation and magnetization equation of magnetite nano-sized particles motion. In addition, the heat transfer characteristics such as temperatures and Nusselt numbers and flow characteristics such as streamlines and isotherms of the magnetic fluid were analyzed with the intensity and direction of the magnetic fields. As a result, the thermal-fluidic characteristics of the magnetic fluid in a cavity were could be controlled by the intensity and direction of the magnetic fields.

Position and Orientation Estimation of a Maneticalluy Guided-Articulated Vehicle (자기적 안내제어시스템을 이용하는 굴절차량의 위치 및 방위각 추정)

  • Yun, Kyong-Han;Kim, Young-Chol;Min, Kyung-Deuk;Byun, Yeun-Sub
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1915-1923
    • /
    • 2011
  • For automated guidance control of a magnetically guided-all wheel steered vehicle, it is necessary to have information about position and orientation of the vehicle, and deviations from the reference path in real time. The magnet reference system considered here consists of three magnetic sensors mounted on the vehicle and magnetic markers, which are non-equidistantly buried in the road. This paper presents an observer to estimate such position and orientation at the center of gravity of the vehicle. This algorithm is based on the simple kinematic model of vehicle and uses the data of wheel velocity, steering angle, and the discrete measurements of marker positions. Since this algorithm requires the exact values of initial states, we have also proposed an algorithm of determining the initial position and orientation from the 16 successive magnet pole data, which are given by the magnetic measurement system(MMS). The proposed algorithm is capable of continuing to estimate for the case that the magnetic sensor fail to measure up to three successive magnets. It is shown through experimental data that the proposed algorithm works well within permissible error range.

MR Contrast Agents and Molecular Imaging (MR조영제와 분자영상)

  • Moon, Woo-Kyung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.205-208
    • /
    • 2004
  • The two major classes of magnetic resonance (MR) contrast agents are paramagnetic contrast agents, usually based on chelates of gadolinium generating T1 positive signal enhancement, and super-paramagnetic contrast agents that use mono- or polycrystalline iron oxide to generate strong T2 negative contrast in MR images. These paramagnetic or super-paramagnetic complexes are used to develop new contrast agents that can target the specific molecular marker of the cells or tan be activated to report on the physiological status or metabolic activity of biological systems. In molecular imaging science, MR imaging has emerged as a leading technique because it provides high-resolution three-dimension maps of the living subject. The future of molecular MR imaging is promising as advancements in hardware, contrast agents, and image acquisition methods coalesce to bring high resolution in vivo imaging to the biochemical sciences and to patient care.

Analysis of Autonomous Vehicle System of Magnetic Marker Based Using Magnetic Sensor (자기저항센서를 이용한 자계기반 자율주행 시스템의 특성분석)

  • Lim Dae-Young;Ryoo Young-Jae;Lee Jin
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.382-385
    • /
    • 2005
  • 본 논문에서는 자기저항 센서를 이용한 자계기반 자율주행 시스템의 자계특성을 분석한다. 자율주행 시스템에서 가장 중요한 핵심기술은 자기원으로 구성된 도로를 주행하는 차량의 현재위치 파악이다. 따라서 자계 도로위의 차량의 현재위치를 검출하기 위한 시스템의 선행조건으로 센서와 자기원 사이에 존재하는 자계의 특성을 분석하기 위한 실험 장치를 설계하고 구성하였다. 그리고 자기원의 설치간격 및 기울기에 따른 자계의 3축성분과 데이터를 획득한다. 획득한 데이터를 이용하여 3축 성분에 따른 거리정보와 방향에 따른 자계의 변화를 분석한다.

  • PDF

The Emerging Role of Fast MR Techniques in Traumatic Brain Injury

  • Yoo, Roh-Eul;Choi, Seung Hong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.2
    • /
    • pp.76-80
    • /
    • 2021
  • Post-concussion syndrome (PCS) following mild traumatic brain injury (mTBI) is a major factor that contributes to the increased socioeconomic burden caused by TBI. Myelin loss has been implicated in the development of PCS following mTBI. Diffusion tensor imaging (DTI), a traditional imaging modality for the evaluation of axonal and myelin integrity in mTBI, has intrinsic limitations, including its lack of specificity and its time-consuming and labor-intensive post-processing analysis. More recently, various fast MR techniques based on multicomponent relaxometry (MCR), including QRAPMASTER, mcDESPOT, and MDME sequences, have been developed. These MCR-based sequences can provide myelin water fraction/myelin volume fraction, a quantitative parameter more specific to myelin, which might serve as a surrogate marker of myelin volume, in a clinically feasible time. In this review, we summarize the clinical application of the MCR-based fast MR techniques in mTBI patients.